
Dustin Skinner
MBA 614

1

Table of Contents

Executive Summary..3

 The Problem...3

 The Investigation..3

 The Solution...3

iSYB Explanation..4

 General Formatting/Usefulness...4

 Buttons/Macros Used in Formatting..5

Explanation of VBA Code...8

 “Budget Detail” Worksheet..8

 “Charts” Worksheet...10

Learning/Difficulties...12

2

Executive Summary

The Problem
It was about 2 years ago that I created a budgeting spreadsheet within Excel. Here, I tracked
the many costs that both my wife and I had, expenses from education to entertainment. This
helped to achieve a growth in savings, even amidst a tight budget. The ability to track the
money that came in and out of our house was something interesting to me. After all, I am
studying accounting, and this is a simple application of such a study. The problem arose when I
wanted a better spreadsheet, but was not completely able to design one with the knowledge
that I had. There were budgeting tools out there, but I didnʼt want to pay $60 to use them.
There had to be some other way...

The Investigation
One day I was talking to a fellow classmate of mine about budgeting. He mentioned a
budgeting software that he used called “You need a budget” or “YNAB.” He said that while it
cost $60 to purchase, it did allow a 1 week free installation to test-drive the software. I
downloaded YNAB and quickly found ways that it was much better than the budgeting tool I was
currently using. It had budgets for many different areas, but consolidated them so as to not
overwhelm the user. It carried unused budgeted balances onto the next month, something I had
not built into my budgeting spreadsheet. It was overall a very useful tool. Again, I bring up the
cost. I, nor my wife, did not want to pay the $60 to purchase a budgeting software. It was the
following week that I entered MBA 614 and we were to create something within Excel, using
VBA, for a business use. I thought this would be the perfect time to create what I desired.

The Solution
My product is called iSYB, short for “I Stole Your Budget.” With the week that I had YNAB, I
learned the inʼs and outʼs and designed my own product within Excel. It has two spreadsheets,
(1) Budget Detail, and (2) Charts. Both are used to help the person budgeting to see the details
of his/her income and expenses. It allows both detailed and summary views of the data.
Ultimately, iSYB is a budgeting solution for all those that canʼt fork out big money to help
manage their cash flow.

3

iSYB Explanation
iSYB is best described in two parts. They are as follows:

1. General Formatting/Usefulness
2. Buttons/Macros Used in Formatting

General Formatting/Usefulness

“Budget Detail” Worksheet
On the left is the main toolbar. Just below the logo there are hyperlinks to the other page in the
spreadsheet (“Charts”). Below the toolbar are all the categories. Each categories has been
included to cover nearly all necessary expenses. Each category has sub-categories that are a
bit more specific. It is a frozen window so it is always visible no matter what month you are
looking at.

To the right of the main toolbar are the various months. These months contain all the necessary
data. Each month is grouped together and can be minimized or maximized in order to make
viewing months easier. To explain the data and its use, below is a picture, along with the
various parts of the budget explained:

Starting iSYB Buffer - This is basically the buffer or savings that you have built up
to that point. This can be thought of as what is in your checking account at the start
of the month.

Income Available This Month - This, just as the name explain, is the income that
is earned in that particular month. This increases the amount that you are able to
budget below.

Budgeted Below - This is a total amount of everything that is budgeted in the
categories below.

Available to Budget - This is the amount of money that is available to budget
without going below $0. If this amount does go below $0, the caption that says
“Available to Budget” will change to say “Warning: Over-budget.”

Budget - This column includes all the budgeted amounts for the various categories
and sub-categories. An amount is listed for a category, which is the total of all the
sub-categories. The total of all budgeted amounts is what leads to the “Budgeted
Below” figure listed above.

Spent - This column is filled by the user and represent the actual costs that are
incurred. Just as is understood by those using a budget, the user strives to maintain
this amount below the budgeted amount listed (Unless it is an account with a
balance built up).

Balance - This is amount contains a couple values. First, it represents the
difference between what is budgeted for a particular sub-category, and what has
been spent in said sub-category. This amount is added to any remaining balance
listed from the months prior. This amount will build for particular items such as
budgeted amounts for doctor visits. While it is not fully expected to see the doctor
every month, this balance will build in months that it is not used, so as to be ready
for the month that it will be required.

4

“Charts” Worksheet
On the left, again we the see the main toolbar. This include the logo, along with the link back to
the main worksheet, “Budget Detail.”

The center of the worksheet include the main information for the charts. The main part includes
two buttons, along with blank area (this is where the chart will show up once the chart
information is selected).

Buttons/Macros Used in Formatting

“Budget Detail” Worksheet
There are a couple useful buttons that help in the automation of the spreadsheet. They include:
Quick Budget, Blank Budget, Add Sub-Category, Add Month, Minimize/Maximize Feature, and
Summary Data.
1. Quick Budget is used to quickly fill in a new

months blank budget with the same amounts
of last month. This helps to quickly create a new
month that is based on last monthʼs figures.

2. Blank Budget is used to blank out a monthʼs
budget. This is used when you donʼt want to
use the same information, but would rather see a
blank sheet before creating your own budgeted
figures.

3. Add Sub-Category is used to do just that, add a
sub-category (A sub-category is basically an
expense item). For example, under the “Savings”
Category you might have a more specific sub-
category called “Baby Fund.” Once the sub-
category button is clicked, it brings up a form (as
shown below). In this form, you can type in a name
for the new Sub-Category, as well as designate the
Category under which the new Sub-Category will
fall. All amounts are the new Sub-Category are
automatically listed as $0.00.

4. Add Month is used
to add another month
to your budget. As the budget continues to
grow, additional months are required. This button
automates the process. Once pressed, another
group of columns (a new month) is automatically
created. It code detects the prior month and
renames the new month with the appropriately.

5

5. Minimize/Maximize is used to expand and contract various columns and rows.
For example, the picture shows the month of December. By clicking on the
button shown (The “-” symbol), it would minimize the month so December ʼ10
would be minimized just as “Nov ʼ10.” By clicking on the same button, the
month will be maximized again to show the month how it was originally
depicted. Similarly, each category on the main toolbar can be minimized/
maximized to hide/show various sub-categories within each category. These
options are provided to make it easier to organize and summarize the
information.

6. Summary Detail is macro that brings up the Summary user
form. Once pressed, it opens a form that shows all the data
for the given month and category (Budgeted, Spent, and
Balance). The user form is shown on the right. The useful
thing in this user form is that it shows the monthly data, as
well as annual. For example, if the user wishes to see his/
her expenses for the month of December, the user will select
“Dec. ʼ10” from the Month drop-down combobox, as well as
the “Spent” category from the Category drop-down
combobox. The data will automatically update and show the
monthly spent data for each category for the month of
December, 2010, as well as the annual total up until that
month. This is extremely useful if the user wants to easily
see how much they have spent throughout the year on
something like “Daily Living” expenses. If the user wants to
close this user form, he/she simply presses the “Exit” button,
or the “X” at the top right part of the window.

“Charts” Worksheet
Below is a picture that shows the “Charts”
worksheet. As was mentioned before, there are two
buttons, accompanied with a large area with a
caption that say “To see a chart, click the “Create a Chart” button.”
Upon clicking the “Create a Chart” a user form appears like this.

6

The user form automatically lists “Jan. ʼ10” (The first month in the budget) as the start date, and
“Feb. ʼ10” as the end date (the second month in the budget). The dates selected represent the
beginning and ending dates that will be used when the chart is created. After selecting the
appropriate dates, a category will be selected. Choices include: Income, Budgeted Expenses,
Actual Expenses, Balances, and Over Spending (These particular categories are as explained
before in the “General Formatting/Usefulness” section on page 4). Once this category is
selected, the user either presses enter, or selects “OK.” Upon clicking the “OK” button, the user
will see a chart appear on the screen, as is shown by the picture to the right (This particular
example shows the Budgeted Expenses from January 2010 through December 2010).

As is depicted, the chart shows the information
in the chart, as well as two columns on the left
part of the screen with the actual data that the
chart is depicting.

If the user wants to create another chart, he/
she simply presses the “Create a Chart”
button once again and they will go through the
same process that was just explained. If the
user wishes to clear the chart, he/she will
press the “Clear Chart” button. This will delete
the chart from off the screen, as well as clear
the data that is shown on the left columns.

7

Explanation of VBA Code
To explain the VBA code, I will list out the various buttons, as well as the various sub procedures
that are used in their operation. First will be all those from the “Budget Detail” worksheet,
followed by those from the “Charts” worksheet. I will also provide actual screenshots of portions
of the sub procedures to aid in understanding (Some are too extensive to appear as one photo).

“Budget Detail” Worksheet

1. Quick Budget
The Quick Budget is a button that automatically updates the
current monthʼs budget with the numbers of last month. To do this,
I first found a way to reference a range relative to the button that
was pressed. This is done with the “TopLeftCell” action. As this is
done, a range is set 3 columns down from the button address.
This is given the same value from 5 cells to the left (last monthʼs
budgeted value). This references row 13, the first sub-category in
the budget. From here, there is 2 Do Loops. The first runs until 2
rows down from the current range is blank. The next Do Loop sets
the current range to the same cell, one row down. The value is
then set as the same row, 5 columns to the left (which is last
monthʼs budgeted value). This Do Loop lies inside the first do
loop, and will run until the row just below the current row is blank.
This allows every cell to update until the very end, which has the
following 2 rows with blank values. This will ultimately lead end the
Do Loops and will end the sub. Screen updating is turned off
throughout the entire sub procedure.

2. Blank Budget
The Blank Budget is a button that automatically blanks out the current monthʼs budget. This runs a very
similar sub procedure as “Sub QuickBudget()”
only instead of setting the values equal to the
values of those from last month, they will be
set to zero.

3. Add Sub-Category
Clicking on the button labeled “Add Sub-
Category” brings up a user form with a
TextBox and a ComboBox. The Textbox is
used to label the new Sub-Category. The
ComboBox is a list of all the current
categories. The particular category selected
will be the home of the new sub-category.

Once the user clicks “OK,” the user form will
run the AddRow2() sub procedure. There are
two parts to this sub procedure: (1) Inserting a
new row with the proper caption, and (2) filling
the cells with either a “0” or a formula.

The first part basically matches the given
input by the user from the ComboBox with the

8

given category from Column B. Once there is a
match found, the code will copy the second to
last row and insert another row as the last sub-
category (this assures that the formatting
continues in “Blue-White” succession). The
appropriate caption is then placed into the new
sub-category row.

Next, the code will fill in the new values for the
new sub-category. It is not as simple as putting
in 0ʼs for every. Instead, it will recognize if the
row above has a number or a formula. If it is a
number, it will insert a “0” to leave the budget/
spent value as blank. If there is a formula, it will
copy the formula down (this assures that the
balance formula works for new sub-categories).
This particular part of the code is shown on the
left.

4. Add Month
Add Month has a similar feature to the Quick/Blank Budget buttons that recognizes the range where the
button “Add Month” button is located. This helps to automate the process of adding columns just after
the last month. The first part of the sub procedure is simple as it copies the previous 5 columns (an entire
month segment) and pastes/inserts this into the columns just before the column where the “Add Month”
button is located.

The next portion of this sub procedure is very long and detailed, but fairly simple to understand. The cell
that describes the month is selected as the active cell. The string “Month” is given this value. From here,
there are a series of If...Then...ElseIf statements built in to recognize what month and year is in that
string. Using the “Left” feature in VBA, the month is recognized. Recognizing this month, the If
statements then give the next monthʼs name as the new value. If the previous month was listed as
December, the “Mid” feature is used to add 1 to the year (2009 + 1 = 2010).

After this is complete, it runs basically the same code as the “Blank Budget” sub procedure, which zeroes
out the entire budgeting column.

5. Minimize/Maximize
This particular sub procedure draws upon one of two sub-procedures: HideDetail (HideMonth) or
ShowDetail (ShowMonth). The sub procedure uses an If Statement to determine if their is hidden data or
not. If it detects hidden data, it will perform the ShowDetail (ShowMonth) sub procedure, which will
unhide the rows for that particular procedure (ShowMonth will do the same, but for columns for that
particular month). The works just the opposite if it detects that rows/columns are not hidden by
performing the HideDetail (HideMonth) sub procedure. Along with this, the caption of the button will
change according to which sub procedure is called.

6. Summary Detail
This sub procedure was a hand-full. Two arrays are filled (one 3-dimensional array, another 4-
dimensional array). One is filled for the Monthly Data, another is filled for the Annual Data. This data is
filled upon selection of month and category when the user form is opened.

The 3-dimensional array includes (Month, Category Type, and Amount). This is the MonthlyArray.

9

The 4-dimensional is similar, only the month is divided out into a year in one dimension, and a month in
another. This array is made up of the MonthlyArray, and it is filled using the code shown below.

Basically, the array will go through each category and will up every amount required and will then move
on to the next month in the particular year. Once it hits the 12th month, it will move on to the next year
and re-perform the previous action. These loops will continue until the month or year is beyond what is
listed in the “Budget Detail” worksheet.

These arrays are then loaded onto the “Summary Detail” user form as the text captions are replaced with
the values from the arrays (whether it is monthly or annual).

“Charts” Worksheet

1. Create a Chart
The “Create a Chart” feature does not store the actual data in any particular worksheet or cell, so the
code is rather extensive.

The user form is first opened with the value previously mentioned in the formatting section (Pg. 6). When
the user selects the values he/she wants, these values are loaded into various variables. The AddChart()
sub procedure is then called.

First, each of the ComboBox selections and button values are passed to the AddChart() sub procedure.

Next, a new chart is created. This chart will be manipulated later according to the data that was selected
on the user form.

Next, a Do Loop runs that collects the various months and saves them in a array. These values are then
matched with the months that were selected for the start and end date for the chart. The program then
verifies that the end month is equal to or after the beginning month. If not, it presents an error box that
explains the problem, and then closes the user form.

10

The sub procedure then runs a series of If statements that
recognize what category was selected, and then names the
charts, as well as the detail on the “Charts” worksheet
accordingly. Also, whatever category that was selected, it will
select that particular range (if the “Budgeted Expenses”
category is selected, it will load the value from Range “I-13”
into the DataCell range. This particular segment is shown with
the screenshot to the right.

After this, it recognizes what the start
month is, and accordingly moves the
DataCell range to the appropriate
category data (This part is shown in the
screenshot to the left). This means that it
will select the first month and load the
appropriate data from that month into the
DataCell. If the start month is not equal to
that particular month, it will select the next
month and load its respective data in
DataCell. It will continue this until the start
date is equal to the month selected. From
here, the chart begins to be populated
until the final month is recognized. Last of
all, the program resizes and refits the
chart to fit inside the appropriate area of
the worksheet. The user form is then
closed and the graph is shown according
the data selected.

2. Clear Chart
The “Clear Chart” button runs a sub procedure named
ClearCharts(). This is a simple procedure that runs through al
the chart objects in the “Charts” worksheet and deletes them
using a For Loop. This sub procedure is depicted in the
screenshot to the right.

11

Learning/Difficulties
Learning

Throughout the process of designing and writing the code for this project, I learned quite a lot
that I did not previously know. Prior to this, I had a very limited understanding of arrays. After
working out the Summary Detail form, I found that the best way to do it was with a multiple
dimension array. I ended up having to use a 4-dimensional array that was then used in 4
nested Do Until loops. It was very complicated code that I previously would have never been
able to do.

A lot of what I learned to do came from simple searches on google. If ever I was having trouble
trying to look up a particular thing to do (such as working with arrays), I found that I was able to
find answers by many various different websites on the internet.

Difficulties

I did run into a problem there and again. A few are listed below:

1. Minimize/Maximize caption is occasionally incorrect after running the Summary Detail. This is
due to the fact that I had to maximize all of the categories in order to load the arrays for the
Summary Detail. I was unable to change the various captions due to my inability to locate
particular buttons throughout the spreadsheet.

2. Due to the Summary Detail having to maximize all the categories to load the data into the
arrays, it left the “Budget Detail” spreadsheet differently then how it was left when the
“Summary Detail” button was clicked. As a consequence, if some categories were minimized,
all would become maximized after clicking on the Summary Detail.

3. I would work on my project in both Excel 2007 and Excel 2003. After creating some of my
sub procedures in Excel 2007, I had trouble running some of them on Excel 2003 (most
particularly the charts, which did not have the particular design I was calling for in the VBA
code).

Overall, I feel that most of the trouble that I ran into I was able to solve. I learned a great deal in
designing this budget. Iʼm grateful we had this project as I was able to save about $60 in the
process.

12

