

Final Project

ISYS 540

Chris Bateman

The Problem

Several times in the course of my employment as a web developer, I have been required to retrieve a

relatively massive list from the internet and either convert it into a XML document or insert it into a SQL

database. Both situations have caused a fair amount of headache for me. My typical process involved

highlighting the table, copying it and pasting it into Excel, and then spending 30 minutes coming up with

some crazy set of Excel functions to generate the desired output.

Example: http://www.loc.gov/standards/iso639-2/php/code_list.php

The Solution

Overview

I created an Excel workbook and VBA script which will parse a HTML page on the internet and find all of

the tables on the page. The user can choose which table to download. After downloading the table to

the spreadsheet and making any desired adjustments, the user can choose to either export the data as

XML or to insert the table into a MySQL database (given a MySQL server, database, username, and

password).

http://www.loc.gov/standards/iso639-2/php/code_list.php

The Process

The user begins by clicking “Download Table”. This brings up a window in which the URL of the page to

be scraped can be entered.

After clicking “Get Tables” a listing of the tables found on the page will appear. The number of rows in

each table will be listed, along with the column names. A number spinner will be activated, which the

user may use to select the number of the table he wants to download. Only valid table numbers will be

able to be selected.

When the user clicks “Download Table” the table will be displayed in the spreadsheet, along with a

warning that the user must change the column names so that they are compatible as either an XML

element or a MySQL table name.

After updating the column names and removing any undesired columns, the user can choose to export

the table to either XML or a MySQL database. When choosing “Export XML” the user will be prompted

to enter a name for the XML element which will compose each item in the table.

After clicking “Go!” the user will find the exported XML file in the same directory as the workbook. The

XML file is formatted for readability.

If the user chooses to export the table to a MySQL database, he will be presented with a dialog in which

to enter the server address, username, password, and database.

The script will create a new SQL database on the chosen server and insert each item into it.

That’s it! The process was designed to have very few steps, allowing the user to get the desired

information to its destination as quickly as possible.

Obstacles

Method of Accessing Web Page

IE Object vs. HTTP request: My initial preference was to use a HTTP request to retrieve web pages.

http.Open "GET", url, False

http.Send

However, I quickly ran into problems, as I was without a good way to parse the HTML. I tried using

regular expressions, but this is obviously a bad idea (see this link). The best option, then, was to use an

internetexplorer object, and select all of the table elements like this:

Set tableList = ie.document.all.tags("TABLE")

http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

Table Discovery

One of the challenges I ran into was the fact that many web pages unfortunately still use tables for page

layout. This meant that on these pages the user was given lots of table options, many of which were

nested and included other tables, including the one the user was looking for. In order to solve this

problem, I simply only accept tables which contain no other table elements.

Set subTables = table.all.tags("TABLE")

If subTables.Length = 0 Then

…

Another problem was that some tables use the proper table header elements (<th>) while others used

regular table elements (<td>) for the header. When I download the header names, I check first for <th>

elements, and if there are none, I simply select the first row of <td> elements.

Undead IExplorer processes

While I was developing and testing my application, I noticed my computer was getting slower. I opened

up the task manager and saw that there were about 15 instances of “iexplore.exe”. Here’s what was

happening: whenever I opened up the initial “Download Table” dialog box, an instance of Internet

Explorer was initialized, and remained open until after the user had downloaded the table, at which

point I called the “Quit” function. While I was testing, I would frequently open up that dialog and close

it out before actually downloading the table, meaning that the “Quit” function never got called. In order

to solve this problem, I had to discover the “Terminate” event. If the form is terminated in any way, I

now call this line of code:

If IsNull(ie) Then ie.Quit

MySQL Connection

One of the most difficult parts of this project was figuring out how to connect to MySQL. In order to

activate the ADODB class, I had to add a reference to “Microsoft ActiveX Data Objects 6.0 Library.” Also,

in order to connect to MySQL, I had to download “MySQL Connector / ODBC 5.1” from mysql.com.

Another difficult part was inserting each item into the SQL table. I initially wrote the script so that it

would string together all of the insert statements and then execute them all at once. This normally

works just fine in MySQL, but for some reason, it didn’t work coming from VBA. My solution was to

execute each insert statement one at a time. This takes just a little bit longer, but it’s not bad enough to

be a problem.

Example Tables

These are some tables on the internet which demonstrate the usefulness of this VBA script:

 http://www.loc.gov/standards/iso639-2/php/code_list.php

http://www.loc.gov/standards/iso639-2/php/code_list.php

 http://www.ssa.gov/OACT/babynames/

 http://sports.espn.go.com/rpm/schedule?seriesId=1

 http://www.iso.org/iso/support/country_codes/iso_3166_code_lists/iso-3166-

1_decoding_table.htm

 http://htmlhelp.com/reference/charset/iso160-191.html

 http://www.xe.com/iso4217.php

http://www.ssa.gov/OACT/babynames/
http://sports.espn.go.com/rpm/schedule?seriesId=1
http://www.iso.org/iso/support/country_codes/iso_3166_code_lists/iso-3166-1_decoding_table.htm
http://www.iso.org/iso/support/country_codes/iso_3166_code_lists/iso-3166-1_decoding_table.htm
http://htmlhelp.com/reference/charset/iso160-191.html
http://www.xe.com/iso4217.php

