
B.J. Saunders

Brigham Young University

MBA 614 – Winter 2010

Final Project

Executive Summary

This project involved the creation of an Excel workbook intended to be used as a database and

management system for running a home salon. The final product began essentially as an ‘upgrade’ to an

existing workbook used by my sister who works as a hairdresser out of her home. The old workbook

was outdated and ‘clunky’ with various glitches occurring. The old workbook used only worksheet

formulas to keep track of basic income and expenses on a monthly basis with summary information on a

master sheet. The new workbook created for this project provides all the functionality of the old

workbook with improved ease of use as well as additional useful functions and features. The new

workbook uses multiple user forms to make it easier to enter income and expenses to better manage

the finances of a home salon business and the worksheet have a much improved appearance.

Additionally, the new workbook adds functionality to store data such as contact info, hair color

formulas, notes, etc. on all clients entered in the client data worksheet. Information on each client is

conveniently displayed and can be edited on a user form, where new clients can also be added and

managed. The user can also choose to send e-mail and text alerts to clients reminding them of their

next appointment.

Home Salon Management System

Introduction
A significant amount of time was put into this project to create a user friendly and stable database

system that can be used to track income and expenses and manage client information for a single

hairdresser running a salon out of her home. The basic user needs for tracking income and expenses

came from a workbook already used by my sister for that purpose. The new workbook is really a major

overhaul of the old work book and provides a much more useful system for managing finances, and

now, clients.

Workbook Features
A brief description of the original worksheet should help to better portray the changes in the new

workbook. The old workbook essentially had a Master Sheet which served as a dashboard for the

important summary financial information from the data entered on the worksheets created for each

month of the year. Screenshots of the original workbook showing the Master Sheet and a sample

month worksheet are provided below in Figure 1.

Figure 1. Screenshots from the original workbook

In the old workbook, the user had to enter the data directly onto the worksheet which created potential

for error, especially in the subtotals using “SUMIF” statements on each month’s worksheet. The same

basic concept of a Master Sheet and a worksheet for each month was used in the new workbook,

although the layouts have changed and the appearance has been enhanced. Screenshots of the new

Master Sheet and a sample month are shown in Figure 2 below.

Figure 2. Screenshots from the new workbook

The basic functionalities of the new workbook created for the project are listed here:

 The workbook starts with only the Client and Master Sheet worksheets (and a hidden Data sheet

that should not be altered except through the options presented in user forms.

 An ‘Add New Month’ button placed on the Master Sheet lets you add a new worksheet for the

next month.

 Each month worksheet is built from “scratch” and buttons to open user forms for entering new

expenses and new income are created. Each month worksheet also has a button to return to

the Master Sheet.

 Within the new expense and new income user forms, the user can add new sub-total categories

to be used for data entry. The active worksheet and user forms are updated with the new

information and all subsequent worksheets will include the addition.

 A new column for summary data from each new month created is automatically created on the

Master Sheet and formulas are entered into the appropriate cells and cell formatting is applied.

 The significant new feature in the new workbook is the functionality to manage client data. A

‘Clients’ worksheet is included with a button to access a user form which allows the user to

store contact and other personal information on each client, essentially serving as a database

for managing clients.

 A new year can be created simply by performing a ‘Save As’ and saving the workbook with a

different name. The month sheets and month data on the Master Sheet can then be deleted

and the year value on the master sheet updated. This approach allows you to easily start a new

workbook for a new year while keeping the client data intact for a new year.

Creating New Month Worksheets
Each new month worksheet is built “from scratch” when you click the ‘Add New Month’ button. This

includes all the formatting, formulas, and buttons. This approach keeps the workbook more orderly and

ensures that new month worksheets have consistent formatting. The code for this operation was not

simply created using the macro recorder but was personally built from the ground up so the code is

“clean”. To improve functionality, efficiency, and more robustness in the code, the code is built in a

modular fashion in several logical sub routines and functions. This applies to all the code generated for

this project.

Some of the features created with respect to new month worksheets and associated user forms are

described here:

 When the ‘Add New Month’ button is pressed on the Master Sheet, the program checks to see if

you already have all the months for the year (i.e., through December). If all the months have

already been added it will not allow you to add another month.

 It also checks that you have entered a year on the Master Sheet before it will add a new month

worksheet since this information is needed to add the label at the top of the new worksheet.

Screenshots of the new user forms created to enter new expenses and incomes are provided below in

Figure 3 and Figure 4.

Figure 3. New Expense User Form screenshot

Through these user forms you can add new categories used for tracking sub-totals. When you click the

associated buttons in each user form a new form appears that allows you to add a new sub-total

category. Those forms check to make sure that a duplicate is not being added. Once a new item is

added, the combo boxes are updated and the sub-total area on the active worksheet is also updated to

include the new entry. A modular piece of code is used that updates just the sub-total output area.

Generating the code to automatically create the new worksheets, with buttons and allowing the user to

add new sub-total categories proved to be one of the most time consuming portions of the project.

The code from a module that creates the “backbone” for adding new sub-total categories is provided

here:

Option Explicit

Const dataTypeLbl = "Data type:"

Const dataTypeLblColumn = 1

Dim dataTypeRow As Integer

Dim typeMatchColumn As Integer

Dim dataEntryRow As Integer

Dim currentNumEntries As Integer

Public Function entryAttempt(dataType As String, userEntry As String) As Boolean

 findData dataType

 If findMatch(userEntry) = True Then

 MsgBox "This entry is already in the data set. Please enter a new " & dataType & ".", vbExclamation,

"Duplicate Entry"

 entryAttempt = False

 Else

Figure 4. New Income User Form screenshot

 addData dataType, userEntry

 entryAttempt = True

 End If

End Function

Sub findData(dataType As String)

 dataTypeRow = 1 'start search at top of sheet

 'Finds the row where data type names should be

 Do Until dataSheet.Cells(dataTypeRow, dataTypeLblColumn).Value = dataTypeLbl

 dataTypeRow = dataTypeRow + 1

 Loop

 'Finds the matching data type column

 typeMatchColumn = dataTypeLblColumn

 Do Until dataSheet.Cells(dataTypeRow, typeMatchColumn).Value = dataType

 typeMatchColumn = typeMatchColumn + 1

 Loop

 dataEntryRow = dataTypeRow + 1

 currentNumEntries = 0

 Do Until dataSheet.Cells(dataEntryRow, typeMatchColumn) = ""

 currentNumEntries = currentNumEntries + 1

 dataEntryRow = dataEntryRow + 1

 Loop

End Sub

Sub addData(dataType As String, newEntry As String)

 If dataType = PeroxideTitle Then

 dataSheet.Cells(dataEntryRow, typeMatchColumn).Value = newEntry

 Else

 dataSheet.Cells(dataEntryRow - 1, typeMatchColumn).Value = newEntry 'Enters the new entry

 dataSheet.Cells(dataEntryRow, typeMatchColumn).Value = "OTHER"

 End If

End Sub

Function findMatch(userEntry As String) As Boolean

 Dim i As Integer 'for the For loop

 For i = 1 To currentNumEntries

 If UCase(dataSheet.Cells(dataTypeRow + i, typeMatchColumn).Value) = UCase(userEntry) Then

 findMatch = True

 Exit For

 Else

 findMatch = False

 End If

 Next

End Function

Public Function getNumEntries(dataType As String) As Integer

 findData dataType

 getNumEntries = currentNumEntries

End Function

Public Sub setDataArray(dataType As String)

 Dim X As Integer

 findData dataType

 Select Case dataType

 Case Is = PoPTitle

 ReDim expensePoP(currentNumEntries - 1)

 For X = 0 To UBound(expensePoP)

 expensePoP(X) = dataSheet.Cells(dataTypeRow + 1 + X, typeMatchColumn).Value

 Next

 Case Is = PayTypeTitle

 ReDim incomePaymentType(currentNumEntries - 1)

 For X = 0 To UBound(incomePaymentType)

 incomePaymentType(X) = dataSheet.Cells(dataTypeRow + 1 + X, typeMatchColumn).Value

 Next

 Case Is = CategoryTitle

 ReDim expenseCategory(currentNumEntries - 1)

 For X = 0 To UBound(expenseCategory)

 expenseCategory(X) = dataSheet.Cells(dataTypeRow + 1 + X, typeMatchColumn).Value

 Next

 Case Is = PeroxideTitle

 ReDim clientPeroxideType(currentNumEntries - 1)

 For X = 0 To UBound(clientPeroxideType)

 clientPeroxideType(X) = dataSheet.Cells(dataTypeRow + 1 + X, typeMatchColumn).Value

 Next

 Case Else

 MsgBox "error"

 End Select

End Sub

Clients
The major new edition to the workbook overhauled for this project is the client database portion.

Generating the code for the desired functionality took some innovative thinking. All interaction with the

data stored on the Clients worksheet is designed to be done through the ‘Clients’ user form that is

accessed by pressing the ‘Edit/Add Clients’ button on the worksheet. A screenshot of a portion of the

Clients worksheet is provided in Figure 5. A screenshot of the Clients user form is also provided in Figure

6.

Figure 5. Screenshot of the new Clients worksheet

An important and somewhat challenging feature to create was the ability to use the same user form to

edit existing clients as well as adding a new client. When you add a new client the caption for the form

changes, the navigation buttons and combo box are grayed out and made unavailable, and the behavior

of the save and cancel buttons change. The ability to navigate with either next and previous buttons or

a combo box that is updated with all name in the database proved somewhat challenging. An example

of some modular code that was used can been seen in the “setNextPrevButtons” sub procedure code

provided on the next page that can simply be called to make sure that the navigation buttons do not

allow you to navigate past the rows where data is currently stored.

Figure 6. Screenshot of the Clients user form. Interaction with client data is intended to primarily take place through this
form.

Sub setNextPrevButtons()

 findLastEntryRow

 If currentRow = lastEntryRow Then

 cmdNext.Enabled = False

 Else

 cmdNext.Enabled = True

 End If

 If currentRow = lblRow + 1 Then

 cmdPrev.Enabled = False

 Else

 cmdPrev.Enabled = True

 End If

End Sub

One of the unfortunate drawbacks of the program in its current state is that new client data is simply

entered at the end of the list, not in a sorted, alphabetical fashion. However, the code is designed such

that the user can close the client user form, sort the data on the worksheet and then reopen the user

form and the data will appear in the sorted order.

E-mail and Text

One feature not yet fully developed in the program is the ability to send email and text to clients to

remind them of their next appointment. The basic code and “infrastructure” has been put into the

program but are not yet fully operational. This lack of functionality is largely due to scope creep that

occurred with the rest of the project. In its current state the program will send an automated email

message to every client in the database with information on their appointment date and time currently

listed in the database using the user’s gmail account by simply pressing the ‘Send E-mails and Texts’

button on the Clients worksheet. The automated message which is sent is currently of the form shown

here:

Dear B.J.,

I just wanted to remind you about your appointment on 4/14/2010, at 8:30 PM.

Other challenges included generating the time and duration lists in the combo boxes on the worksheet.

Conclusion
In all, despite some of the few shortcoming and lack of functionality that still exists, specifically with

sending email and texts, the workbook provides a user friendly and useful resource for someone running

a small hair cutting business out of their home to manage basic financials and client information.

