

Full Profile--Conjoint Analysis
and Experimental Design

Final Project-VBA

By Alex Sakaguchi and Brent Taylor

Executive Summary

One of the most important and useful tools in all of marketing research is the ability to conduct studies using
conjoint analysis. Full profile conjoint analysis is a way of using experimental design and full/partial factorials
to come up with a set of cards that represents a given product’s features and levels (profiles). A person will
go through and rank these cards in order of preference, from which the researcher can later derive
representational utility for each combination of features and levels. It is not hard to see that as you include
more features or levels per feature the more possible combinations there are and the less feasible it becomes
to have a person go through and rank the cards. To compensate for this, experimental design narrows the
total number of possibilities (factorials) that would be on each card to a manageable set of cards between 8
and 16 in most cases. The model is limited in that the more you use fractional factorials, the less your
predictive capability becomes. For example, if you have a product that has four features with four levels per
feature the total number of possible combinations is 256 (4x4x4x4). The model will use partial factorials to
narrow the required number of cards to 16 and gives the researcher predictive capability to estimate utility
levels for any combination—even one that has not necessarily been represented on the cards.

The demand for marketers that are familiar with conjoint analysis is consistently high. Software designed to
conduct the necessary computations and algorithms to accurately conduct conjoint studies sells for many
thousands of dollars—thus, making it a very expensive tool. This past winter semester, Dr. Smith introduced
us to a basic DOS based tool that assisted in setting up full-profile conjoint analysis. He mentioned that the
tool was over 20 years old, yet due to the lack of “affordable” alternatives, it was all we could use. Due to our
marketing ambitions and desire to learn how to conduct conjoint studies, we thought to write a solution for
the problem using VBA. In continued research on the scope of this task, we were disappointed to learn that
solutions currently available to help a researcher through the experimental design approach were in excess of
10,000 lines of code. Due to the sheer size of this undertaking, we have simplified the model so that instead
of outputting utility levels with empirical support, we can simply use the cards to determine functional
direction a firm should undertake when considering a new product offering, change to an existing product, or
other line/brand extension. Dr. Smith, owner of Qualtrics, has already communicated interest in our
research.

Implementation Discussion

• When a marketing manager wishes to test for viability and direction a firm should take when
considering a new product offering, change to an existing product, or other line/brand extension, he
will simply open the excel sheet and click on “Create New Cards”.	

	

• From there, the user will be presented with a form where they can choose the number of product
features the test will assume. To make the project more feasible, we have limited the number of
features a product can have to 6.	

• Once the number of features is decided, the user is presented with a form where they will name each
individual feature. These names will be used dynamically on the next user form, as well as on the final
deliverable for the user. It should be noted, an error trap will not allow the user to use a zero length
string for the name of a feature	

	

	

	

• Next, the user will be asked to input the name of each level per feature. We have limited the number
of levels to two levels per feature in order to make the task a little less complicated. 	

• It’s important to note that the total maximum possibilities allowed in this model is 2^6 or
2x2x2x2x2x2 which equals 64 combinations.	

• Typically there is a rank order to the features. That is to say, one level is inherently preferred over the
other (hence the naming of ‘high’ and ‘low’ features). However, this does not always have to be the
case. It may be that something like color is simply a preference. This does not have any negative
impact on the analysis of the researcher conducting the conjoint. Rather, the extent to which these
‘lateral’ moves are used appropriately, it can add depth and understanding.	

	

• Once the user has successfully navigated his way through selecting product features and levels, the
program is now ready to generate the cards that can be given to participants to rank. This represents
the most difficult part of the project. Below is a screen shot of the code that assigns the product
feature level in order to accurately represent each an equal number of times.	

	

	

	

• Additionally, we encountered the following problems, and overcame them with the subsequent
solution:	

o Problem: Although we can use counters to be sure our random generation of cards is equally
weighted, we soon realized there was nothing to prevent the exact same card from being
randomly generated twice. This was especially a problem with 3 features since there are only 8
possible combinations and we are using 8 cards. There is only a 0.24% chance that all 8 cards
would be unique in that case.	

 Solution: We added functionality that compares each card to every other card, looking
for matches. We loop until nothing matches. Initially we were concerned that
perhaps this would consume a large amount of processing time, but that was not the
case.	

o Problem: Solution to the problem above created another problem. If there are only 2 features
selected, there are only 4 possible combinations. With 8 cards, each solution needs to be
represented exactly twice. 	

 Solution: We built in functionality that checks the first four cards against each other,
and the last four cards against each other if there are only 2 features.	

o Problem: If a user begins inputting information but decides to quit, other procedures called
from our control sub still tried to execute.

 Solution: If the user ever decides to quit, we added a global Boolean variable that
indicates whether or not the program should continue running after the user forms are
finished.

• In order to keep the program understandable, we decided to use a ‘control’ procedure that functions
mostly to call other procedures as needed. A screen shot of this control procedure is included here

The columns represent the levels in each
feature. Note column 1—this feature,
which happens to be price, includes 4
levels: $3k, $5k, $15k, $30k. Each one is
assigned a value, 0, 1, 2, and 3 respectively.
The rows are the profiles generated
through experimental design.

Dr. Scott Smith provided this data from an
actual study conducted.

Learning Discussion

First of all, one big learning point is that there is a reason why there are no simple solutions to conduct
conjoint analysis and that those that are available are certainly justified in their price points. This project was
not easy. Now that it works, though in a simplified manner, we believe we’ve been able to create a very useful
solution for firms that might be considering new product offerings and would like to test the “validity” of
direction moving forward. Though exact utility levels per feature and level is beyond the scope of this
assignment, the tool does provide a starting point for marketing managers to determine whether or not they
should move forward in a particular direction. The object of this type of automation is to make processes
more simple and consistent. This model does exactly that. The cards it produces are valid and consistent
with experimental design and are presented in a format that is ready to print.

Working with so many small pieces of data, this particular project greatly enhanced our ability use loops and
arrays effectively. While there are some places we would have liked to use them more, a very large part of the
code is looping similar lines of code over and over. Without loops, coding this would not have been an
enjoyable experience.

Code that we are proud of:

