
Financial Statement Ratio Builder Write-up

Executive Summary

All Professional Stem (audit and business analysis) Masters of Accounting students at Brigham Young
University are required to complete a course in financial statement analysis. The final project for that
course is to present a valuation of a company of the student’s choice. As part of this valuation, students
are required to conduct a ratio analysis of the company and its respective industry. Data for this
assignment is obtained via S&P’s Compustat, and is found on the Wharton School of Business website.
After the company- and industry-specific data is downloaded, students must manually manipulate the
data to create 22 separate ratios relating to profitability, efficiency, leverage, cash flow, assets, and
other. This process takes a long time, and – because of this – not every student will create all the ratios.

Having a program in Excel that can automatically create these ratios for both the company and its
industry will save a lot of time and will also make available better information for the company’s
valuation. The program from this project does just that.

Improvement Needed

To begin the ratio analysis assignment, students are required to access a Compustat database (a
database that collects financial information), select specific accounts and measurements for their
chosen company and industry, and download the data sheets. You’ll see below two screenshots of the
downloaded data that are needed to create the company and industry ratios, respectively. Notice how
the data needs improvement in categorization, alignment, subtotaling, sorting, filtering, isolation, and
formatting. It’s entirely possible to construct a ratio analysis from the data in its current form, but the
process is laborious.

Company-specific data

…

…

(Notice how the first row contains the account or measurement name, followed by the data.)

Industry-specific (not all the data can fit in one screenshot)

First Steps Toward Automation

Having already completed the ratio assignment without the use of this program, I was aware of a few
quirks in the downloaded data that needed to be fixed. First, choosing which accounts needed to be
included in the download was sometimes difficult to keep track of. In fact, the whole process from start
to download was a bit choppy, and so I created an instruction sheet that lists everything one needs to do
once they get to the Compustat website, including all instructions to finish up the calculations.

Next, once I had the data downloaded, I needed to ensure that there were not any blank cells where
data needed to be. (Because Compustat has to provide standardized data for many different companies
and industries, there will sometimes be certain accounts that are aggregated elsewhere. This is for the
sake of comparison.) This was important because sometimes an automatic formula will only calculate up
to a blank cell, and I didn’t want to take any risks of this happening. Recording myself searching for blank
cells (“”) and replacing those cells with zeros remedied this. For the industry data sheet, I sorted the
data by ascending fiscal year, and then subtotaled all the accounts/measurements. After automating
sort, filter, and format functions, I was ready to create the ratio worksheet.

Building the Ratio Worksheet

The program next adds another worksheet to the book and prepares it to manipulate data from the first
sheet. What I failed to mention earlier was that all the information needed for the ratio assignment is
found on a handout from the course professor. This handout includes what ratios are required for the
assignment, how they’re calculated, and their description (see below).

To maintain uniformity and not depart from the simplicity of the original assignment, I decided to
format the ratio worksheet almost identically to the layout of the above handout. Again, recording
myself writing the different column headings helped create somewhat of a template for other ratios and
categories to follow. I was doing a lot of copying and pasting with the code, and it was nice to have an
recorded example to reference. A very important point to mention is that the program I created does its
best to use relative references in moving between cells and worksheets. This is important because the
program has to be flexible when data of various sizes need manipulation. This is especially true for
industry-specific data, which I will mention later. You’ll notice in the code that nearly all references are
R1C1, and not simply a Range(“”).

Finally, apart from formatting and adding borders, I was ready to start pulling in the data to create the
ratios. The screenshot below shows a line of code that each ratio has. The company-specific data was
relatively much easier to create because all I needed were the correct references to particular
accounts/measurements, select the first year, and then auto-fill in the information until there was a
blank cell on the data sheet. Working through the industry-specific ratios was much more difficult, and
I’ll discuss that later in the write-up.

To make the information as user-friendly as possible, I finished the ratio worksheet by aligning all the
columns, wrapping the ratio “description” text, and freezing the top row of data for simple scrolling.
What the user is left with is a spreadsheet that shows the name of the ratio, how the formula is
calculated, the formula denominated in Compustat terms, a description of that ratio, the respective
years being calculated, and the ratios themselves – conveniently and correctly formatted in currency,
comma, or percentage (see below). What took at least an hour to complete now only took a few
seconds. The information made available by the financial statement ratio builder could easily be
converted into tables and graphs to the users’ liking.

Learning and Conceptual Difficulties

This project was rife with learning and conceptual difficulties. Because I had not written quite an
extensive block of code before, I had to overcome even the most elementary rules of writing a VBA
program. Fortunately, recording myself creating different components of my planned program was very
useful. By this I was able to easily write code for search and replace, auto-fill, name ranges, formatting,
borders, and the calculations themselves.

However, the most difficult part of this project was figuring out a way to make it flexible for all years and
especially for all sizes of data. By all years, I mean that the program would be able to take any five-year
block of data and create the correct label on the ratio sheet. At first, I really worried about writing a user
form-type program that would prompt the user for the years of data they wanted manipulated. I didn’t
want to do that, and so I realized that once I had the data in the Company-specific sheet sorted by year,
I could simply tag the second row in that sheet and auto-fill down in the ratio sheet. It was this method
that helped me learn more about relative references and their significance in flexible programs.

The problem that made me spend the most time pondering, testing, and writing was that of flexibly
manipulating the industry-wide data. Finding amounts and years in the company-specific data was
relatively easy. Because there are only five years downloaded for one company, the downloaded
company spreadsheet only has five lines of data under the headers. This makes it really easy to relatively
reference whatever you need, including the year, and auto-fill down. There is, however, a big difference
in the industry data, and that is the number of companies in a respective industry. For example, Home
Depot has only six competitors listed in its industry, whereas BlackRock (an investment management
firm) has sixty competitors. This made it impossible to simply count down however many cells, grab a
number or year, and then calculate a ratio. To fix the year problem, I knew that every person’s analysis
would start with their ‘Year 1’. So, to provide an accurate year next to the ratio, I grabbed the first year
on the data sheet (after sorting it by year), and then added 1, 2, 3, or 4 to the number down the row.
What I had left to fix were the actual calculations.

In the process of remedying the
calculation/relative reference
problem, I spent a lot of time on
one method that didn’t work. I
knew that I could easily find the
yearly averages (subtotals) by
conducting a search for
“average”. The search took me to the first average on the data sheet. If I wanted to go down to the next
“average”, I simply added a comman
After finding the first average, I named the range “Y1_Average”, and so on until I named “Y5_Average.”
Now, all I [thought I] needed to do was relatively reference any cell in that row an
calculation. My problem was this: I was already inside a formula code to write the ratio calculation.
There may be a solution to this, but I could find no way to (1) find a cell, (2) move from that cell to
others on the same row, and (3) make a calculation out of it … all while inside a formula command. I
couldn’t make it work without destroying the flexibility of the worksheet. Finally, I decided to carry out
the one thing I didn’t want to do.

In order to identify which cells were which in
reference by year. As mentioned before, I had no problem
cell that read “average.” What I then had to do was move from left to right and have the program
automatically name each range for each year. The screenshot below is an example of just one of those
years. (Notice that each account/measurement is followed with a number ‘1’, meaning that it is for the
first year.

The search took me to the first average on the data sheet. If I wanted to go down to the next
“average”, I simply added a command to find the next “average” after the currently selected “average.”
After finding the first average, I named the range “Y1_Average”, and so on until I named “Y5_Average.”
Now, all I [thought I] needed to do was relatively reference any cell in that row and send it to the
calculation. My problem was this: I was already inside a formula code to write the ratio calculation.
There may be a solution to this, but I could find no way to (1) find a cell, (2) move from that cell to

ake a calculation out of it … all while inside a formula command. I
couldn’t make it work without destroying the flexibility of the worksheet. Finally, I decided to carry out

In order to identify which cells were which in their respective years, I had to name each individual
reference by year. As mentioned before, I had no problem finding the right subtotal by

What I then had to do was move from left to right and have the program
omatically name each range for each year. The screenshot below is an example of just one of those

years. (Notice that each account/measurement is followed with a number ‘1’, meaning that it is for the

The search took me to the first average on the data sheet. If I wanted to go down to the next
d to find the next “average” after the currently selected “average.”

After finding the first average, I named the range “Y1_Average”, and so on until I named “Y5_Average.”
d send it to the

calculation. My problem was this: I was already inside a formula code to write the ratio calculation.
There may be a solution to this, but I could find no way to (1) find a cell, (2) move from that cell to

ake a calculation out of it … all while inside a formula command. I
couldn’t make it work without destroying the flexibility of the worksheet. Finally, I decided to carry out

their respective years, I had to name each individual
finding the right subtotal by moving to the

What I then had to do was move from left to right and have the program
omatically name each range for each year. The screenshot below is an example of just one of those

years. (Notice that each account/measurement is followed with a number ‘1’, meaning that it is for the

What was also a little frustrating about naming the ranges was that Excel already had claim on some of
the most obscure collections of letters and numbers. That’s why some of the names are actually spelled
out. I wrote the above code for all five years.

Once I had all the ranges named, I then went back through my calculations and wrote in the correct
references. Again, I could not simply auto-fill my first cell down to the fifth year. Each one had to be
entered manually (as shown below).

Having to complete this exercise of tagging each reference actually made the program much stronger
because it doesn’t have to rely so heavily on relative references. After fixing a few problems with border
formatting and incorrect relative references, the program was complete. When I clicked ‘play’ for the
program’s maiden voyage as a completed work, an error message popped up and told me that the sub-
procedure was too big. I was devastated, but only for a few seconds. I split the code into two separate
codes, and the program ran fine.

