

Your Financial Dashboard

Ryker Willie

12/9/2010

Executive Summary:

Mint.com does a terrific job with categorizing one’s financial transactions. However, when presenting

data spanning more than two months, the user is unable to quickly determine how much of each

category was accumulated in each particular month. Instead, the user finds that Mint aggregates the

amounts from each month and presents a totaled number for the period. This is a problem if the user

wishes to see a quick categorized summary for multiple months at one time.

My project involved producing a 12-month dashboard summary that will assist the user in quickly

capturing and maintaining the categorized numbers for 12 months of financial data. This required

accessing one’s Mint.com account, navigating through the Mint.com webpage, importing the data, and

presenting the results in a customized dashboard summary sheet. The dashboard also automatically

produces graphs of importance for the user.

Introduction

As I walk you through my project implementation, throughout the process I will make note of the

difficulties that I encountered and the lessons that I learned.

Implementation

Below is a screen shot of the 12-month financial dashboard

The financial dashboard is the summary page that displays categorized income and expense data for 12

months. To better understand the need of such a dashboard, consider the fact that Mint gives only the

following choices: month vs prior month comparison, month vs same month last year comparison,

current year totals. The presentation of the financial data is severly limited. The 12 month dashboard

summary enables the user to see everything on one page.

Year-to-Date Spending without Monthly Breakdown

VS

After creating the summary page, the next step was to access Mint.com , import the required data, and

place the imported data in the proper column on the financial dashboard.

Learning and Conceptual Difficulties

Besides receiving a couple of lectures that introduced me to the basics of accessing password protected

sites, this was my first time attempting to interact with a unique webpage through code. In addition,

this was my first time working with class modules.

Class Modules

At first, I was unfamiliar with the significance of Professor Allen’s web page class module. In fact, I was

unaware that I needed to incorporate that same class module into my own project. After a few hours

of attempting to create my own class module, I realized that all I needed to do was import Professor

Allen’s module into my project. Even though I became somewhat side tracked, I learned somewhat

concerning class modules. I now know that class modules enable a programmer to design his own

object, methods, and properties.

Accessing Password protected sites

After I became familiar with the class module, I was able to successfully log in to Mint. The next step

was learning how to navigate around on the web page. This involved learning the code it takes to click

on tabs or links. This proved to be a challenge (see section below). Upon entering the web page, I next

needed to click on the “Trends” tab below. After clicking on this link, I was able to get to the data that I

needed.

Challenges with navigating on websites

This was probably one of the more difficult parts of my project. After some time I learned that Mint’s

HTML code employed various means for navigation. These included the following:

 Buttons

 Forms

 HTML links

 Javascript

 As one knows, it order to manipulate an HTML object, the user must first discover that object’s ID or

name. I spent a good amount of time exploring the possibilites. Probably the greastest skill that I

developed when working with the HTML code is greater efficiency when locating an object’s ID or name

in the HTML code. In addition, I know how to manipulate HTML buttons, HTML forms, and HTML input

boxes.

The most challenging navigation related to javascript. The screenshot below demonstrates the struggle.

Initially, I wanted the project to be completely automated. As such, the user would not have to select

the desired month on Mint. However, I was unable to figure out exactly how to command this javascript

code. I was somewhat relieved when Professor Allen could not figure it out either (He informed me that

he spent about an hour and a half trying to figure it out). At some length, we determined that the best

way to deal with the problem would be to introduce a message box that requested the user to manually

select the desired month. See the screenshot below:

Here I learned an important lesson. If I am unable to figure out how to automate a process, there is no

harm in stopping the code so that the user can make necessary adjustments, in this case, the selection

of the proper month. At first, it was hard to introduce manual user interference. I resisted because I

wanted my project to be completely automated. I have learned, however, that at times it might be

most practical to stop code execution and allow the user to make the necessary adjustments. This can

be done with message boxes.

Locating and Placing the Expense Data

Once the data was imported into my workbook, I had to figure out how to locate the data needed. Once

I found the data, the next step was writing the code that properly placed the code on the dashboard

summary. For me this was my crowning acheivement I was able to both locate and paste the data onto

the summary page with just one subprocedure. I employed the use of the INSTR function and a nested

for loop. See the code below:

However, I had to make one adjustment before executing the code above. The screenshot below is a

shot of the imported page. Notice cell A271. When I executed the code above, the subprocedure

always selected cell A271 when searching for “Food & Dining”. As a result, the correct amount of “Food

& Dining” expense never got pasted to the dashboard summary. I still don’t know why the INSTR

function skipped cell A257, especially since it is encountered before cell A271 (I faced the same issue

when searching my income items i.e. the top income source would always be skipped). What I decided

to do was find the cell containing “Top Category” and delete the items below it. This resolved the issue

and all items were able to be properly pasted to the dashboard summary.

The next challenge was figuring out how to get the data in the correct column on the dashboard

summary. The nested for loop, by default, placed the data in the January column as shown below.

Placing the data in the correct column would have been easy if the imported page contained a unique

identifier associated with the selected month. However, suprisingly, the imported web page contained

no such identification.

After some time, I realized that I could allow the user to specify which month he had imported. Here, I

employed the use of an input box where the user types in the name of the month imported. See the

screenshot below:

The resulting value is copied onto the imported page and used as the page’s unique identifier. Now,

with a unique identifier, I was able to assign the data to the correct column utilizing the following code:

As an aside, I used the UCASE function on the value typed by the user to make sure that the code above

finds the month typed by the user. In addition, here I would have liked to have developed the code in

such a way as to not have a separate subprocedure for every month. I am still unaware of how this

might be done.

Locating and Placing the Income Data

Once the expense data is placed in the proper column on the dashboard summary, the code performs

the same procedures but this time imports income data and places it properly on the dashboard

summary. After the code completes the income data, the user is prompted with the following user

form.

If the user clicks “Yes”, he restarts the entire process and is able to import data for a different month. If

the user clicks “No”, the code ends and he is able to enjoy the benefits of his newly created financial

dashboard.

For some reason the code produces this strange message box before the user form.

Even though the code continues after clicking “OK”, it would be nice to figure out how to remove this

message box.

Graphs

 With the click of a button, the user can view a pie chart that helps the user understand where his

money is being spent. The graph contains average spending and effectively shows each category’s

percentage of total spending. In addition, the user can view a pie chart that helps him better

understand his income in much the same way. See an example of the pie charts on the page below.

Auto &
Transport

7%

Business
Services

0% Entertainment
5%

Fees &
Charges

21%

Food & Dining
26%

Gifts &
Donations

16%
Health &
Fitness

1%

Home
1%

Personal Care
5%

Shopping
19%

Expenses

National Kidney
Payroll

75%

Brigham
Young Un

25%

Interest
0%

Income

