

Wrote the report and built the project based on our discussion on 10-Nov-2010. Hoping for a

B+ based on our discussion.

 Auto Formatter for loan analysis

 Vasanth Yenegalla

 VBA Class

Summary:

In order for a bank in Salt Lake City to accurately forecast losses for its Commercial Real Estate loans, it

needs the help of a third party tool called “CRE Analysis”.

But, the tool needs the user to input a data sheet, providing details such as loan amount, zipcode,

LTV(Loan to Value) etc. of the loan. This data is retrieved from a database of the bank. However, the

data retrieved from the database doesn’t comply with the format “CRE Analysis” requires. Every day

tens of sheets are loaded by each user of the tool to perform analysis on loans. Each user spends about

half an hour to one hour just formatting the sheet to comply with the tool’s requirements. Automating

the process can save the bank about 25-30 man hours each day and generate lot of savings for the bank

as the time spent on formatting the sheet can be spent on some financial analysis.

This document details the VBA algorithm and code used to automate the process.

How to execute the program:

1- Open the file NewFormat_FinalCode.xlsm

2- Go to the Developer tab then Macro and then click on NewFormat Macro as shown below:

3- A message box pops up saying that “Default values will be assigned to blank cells”. Click OK if

the user is OK with predefined default values filling the blank cells. Otherwise the user will have

to stop the program and manually enter the values.

4- Enter a desired default value when the input box asks to. This happens when data validation

finds bad data. E.g., negative loan amount. A default value such as 0 can be entered in the input

box as below:

5- When Formatting is done a message box saying “Done” pops up:

Detailed Explanation:

1- Data Sheet:

In order for the “CRE Analysis” tool to forecast loan losses, it needs the following 20 columns of data

retrieved through a SQL query.

1- Loan Id

2- Zip

3- Property Type

4- Origination Date

5- Current Date

6- Loan Amount

7- LTV (Loan to Value)

8- Date when LTV was calculated

9- DCR (Debt Coverage Rate)

10- Date when DCR was calculated

11- Tenant Credit

12- Risk Grade of the loan

13- Coupon Rate on debt payments

14- Type of Interest payments

15- Amortization Period

16- Rate Spread

17- Rate Floor

18- Rate Ceiling

19- Loan Performing Status

20- Variable Rate Index

This is how the unformatted data sheet looks:

All the fields in the above sheet are in the General Format. Also, all the fields specified are mandatory. In

the absence of a value, we need to populate a default value. We see some blank fields in the sheet,

which was a data entry mistake while creating the loan. Loan Id is a mandatory field during data entry.

So, it cannot be blank. The requirements are as follows:

1- Loan Id

Field Type: Text

Default value: Mandatory Field

Constraint: None

2- Zip

Field Type: Text

Default value: “00000”

Constraint: None

3- Property Type

Field Type: Text

Default value: “NA”

Constraint: None

4- Origination Date

Field Type: Date

Default value: 00/00/0000

Constraint: None

5- Current Date

Field Type: Date

Default value: 00/00/0000

Constraint: None

6- Loan Amount

Field Type: Currency

Default value: 0

Constraint: Always > 0

7- LTV (Loan to Value)

Field Type: Number with 4 decimals (0.0000)

Default value: 0

Constraint: Always > 0

8- Date when LTV was calculated

Field Type: Date

Default value: 00/00/0000

Constraint: None

9- DCR (Debt Coverage Rate)

Field Type: Number with 4 decimals (0.0000)

Default value: 0

Constraint: None

10- Date when DCR was calculated

Field Type: Date

Default value: 00/00/0000

Constraint: None

11- Tenant Credit

Field Type: Text

Default value: “BBB”

Constraint: None

12- Risk Grade of the loan

Field Type: Text

Default value: “Good”

Constraint: None

13- Coupon Rate on debt payments

Field Type: Percentage

Default value: 0

Constraint: None

14- Type of Interest payments

Field Type: Text

Default value: “False”

Constraint: None

15- Amortization Period

Field Type: Number with zero decimals

Default value: 0

Constraint: None

16- Rate Spread

Field Type: Percentage

Default value: 0

Constraint: None

17- Rate Floor

Field Type: Percentage

Default value: 0

Constraint: None

18- Rate Ceiling

Field Type: Percentage

Default value: 0

Constraint: None

19- Loan Performing Status

Field Type: Text

Default value: NA

Constraint: None

20- Variable Rate Index

Field Type: Text

Default value: NA

Constraint: None

Sub Procedures Used:

1- NewFormat: This is the main macro. When executed, it calls another macro i.e

DefaultValues to fill blank data with default values depending on the column. It later

formats each of the columns to the desirable format.

2- Default Values: This gets called from NewFormat and assigns default values before the

columns get formatted.

Algorithm:

Flowchart:

 No Yes

Methodology:

We need to address three aspects in each field:

1- Field Type

2- Default Value

3- Constraints

So, the code follows the following sequence of steps:

Checked for

constraints and

default values?

NewFormat

(Main Sub Procedure)

DefaultValues

(Sub Procedure that checks

for data constraints and

assigns default values in

absence of data)

Display the formatted

sheet and say “Done”

1- Execute the Macro “NewFormat”

2- The macro/sub procedure DefaultValues gets called

After DefaultValues is called, a message box asks for permission if the code can replace

blank cells with default values.

The code used is:

MsgBox ("In absence of a value, a default value will be populated")

Then the following steps are followed in DefaultValues Macro:

a- Identify the last column

In order to format each and every column, it is important to know the last row of

the spreadsheet.

In the DefaultValues sub procedure/macro, the last row is identified using the first

column, i.e. Loan Id, which will never be blank. The following lines of code take care

of that.

r = 2

Do Until Sheets("DataSheet").Cells(r, 1).Value = ""

Assign Default values and Check for constraints

 r = r + 1

 Loop

Then the sub procedure DefaultValues assigns default values to the blank cells and

checks for constraints.

b- Assign default values

The Do Until loop works till a value in the first column is blank.

The body of the Do While loop assigns default values and checks for the constraints

in the column. For example: the code for the first column Loan Id is a mandatory

field that cannot be blank. If the first column in a row is non-blank and the sixth i.e.

Loan Amount is blank, the sixth column is replaced by the default value i.e. 0. The

code is as follows :

If Sheets("datasheet").Cells(r, 6).Value = "" Then

 Sheets("datasheet").Cells(r, 6).Value = 0

c- Check Data Constraints

Whenever a data constraint is imposed on a column, for e.g. loan amount i.e.

column 6 cannot have negative values. When a negative value is encountered, we

get an input box asking for a default value as below:

The code used to check for constraints is always a part of the if statement used to

check default values as below:

 ElseIf Sheets("datasheet").Cells(r, 6).Value < 0 Then

Sheets("datasheet").Cells(r, 6).Value = InputBox("Loan Amount is Negative.

Please Specify a default value")

 End If

3- After DefaultValues get assigned, the columns get formatted:

After data validation is done and default values are assigned to the blank cells, each of the

columns is formatted to the target format. E.g: the eleventh column or column K needs to

be formatted to a text. The code below is used for column K.

 Sheets("DataSheet").Range("K2").Select

 Range(Selection, Selection.End(xlDown)).Select

 Selection.NumberFormat = "@"

After all columns have been formatted, a message box pops us saying “Done” as below:

Learnings and Outcome:

This project has the potential to save about 20 man hours per day for Financial Analysts in one

department alone. If used by all the users it can save up to 50 man hours per day in the entire

company.

It was a challenge to find the exact syntax for a specific format. E.g: The syntax to format a

column to text. This was addressed by recording the macro for formatting a column from

general to text.

It was also a challenge to find out the last row given the presence of many blank cells in each

row. This was addressed by taking into consideration that the first column always has values

given that it is a mandatory field and a Do Until loop was used to make sure that the formatting

continues till a cell goes blank in the first column.

I have come a long way since the first class and this class lays a good foundation for me to build

on my VBA skills.

