
Marcelo Ribeiro

(801) 425-7168 ▪ marcelo.ribeiro@byu.net

MBA 614 – SPREADSHEET AUTOMATION & MODELING

Username is stored as txtUsername

Password is stored as txtPassword

Begin date is stored as txtBegin

End date is stored as txtEnd

FINAL PROJECT WRITE UP

1. Executive Summary

This project is intended to help to organize the finances of the “programmer” who has checking and

savings accounts in the Wells Fargo Bank and a credit card account with American Express. It allows the

user to enter his username and password, define the time range desired and then download the statements

and organize it month by month including totals. The program will allow the user to do in a couple

minutes what has been done in about 30-45 minutes and will facilitate all sorts of analysis he will be able

to do with the data arranged in an organized and neat way. This will make easier for him to track his

financial behavior and to better make financial decisions for the future.

2. Implementation

a. Downloading the data

The first thing necessary to implement the project is to access the account information in the Wells Fargo

webpage and the American Express account. To do so and to not have the username and password

hardcoded, I decided to use a user form to capture this information through user input. The user form

looks this:

Before proceeding, the program needs to check if all fields are filled and since the username and

password can be any kind of string, it will not check any specific format for that. The begin date and end

date need to follow a specific format (mm/dd/yy) so the program will check for the length of the string (8

characters) and for the presence of the slashes in the right place.

If txtUsername.Text = "" Or txtPassword.Text = "" Then

2

 MsgBox "Username and passoword required."

 Exit Sub

ElseIf txtBegin.Text = "" Then

 MsgBox "Date range required."

 Exit Sub

ElseIf Len(txtBegin) <> 8 Or Len(txtEnd) <> 8 Then

 MsgBox "Please make sure you enter the dates in the format mm/dd/aa"

 Exit Sub

ElseIf Left(txtBegin, 2) > 12 Then

 MsgBox "Please make sure you enter the dates in the format mm/dd/aa"

 Exit Sub

ElseIf Mid(txtBegin, 6, 1) <> "/" Then

 MsgBox "Please make sure you enter the dates in the format mm/dd/aa"

 Exit Sub

(…)  repeat basically the same commands for txtEnd

End If

After checking the parameters, the program opens the Internet Explorer web browser and access the Wells

Fargo login page.

Entering the data into the page was basically done in two different ways throughout this project. All of

them used the code developed by Professor Allen called “agent”, which had to be previously imported

into the excel file.

The first way to enter data in a specific field in the html code is to look for the “id” of the desired field

and then determine its value. For example, to enter the user name in the page above, I simply looked for

the “id” of the “username” field, which in this case is “userid”, then I set its value to be equal the user

name previously typed in the user form and stored in a variable called “userNameWF”. Similar to that

was also the method used to click the sign on button, which “id” is “btnSignon”.

agent1.explorer.Document.All("userid").value = userNameWF

agent1.explorer.Document.All("btnSignon").Click

The second way is to look for a group of characters, or string that would be right before the wanted link

and use the “moveto” method to move the insertion point to the desired position, which is right before the

3

begin of the wanted url address. The program then stores the url in a variable called “link” and uses the

method “open page” as in the example below:

To access the link to the account “Complete Advangate (RM)XXXXXX2593” below the following code

was used:

agent1.updateHTML

agent1.position = 1

If Not agent1.moveTo("COMPLETE ADVANTAGE") Then

 MsgBox "String not found in page's source 1"

 Exit Sub

End If

agent1.moveTo "href="""

link = agent1.getText("""")

agent1.openpage link

agent1.waitForLoad

Using either of the aforementioned approaches, it was possible to access all the necessary pages within

the Wells Fargo webpage, select checking and savings accounts, enter the desired data range (previously

typed in the user form) and finally download the statements in the “.csv” format.

4

As per the download, the user has to interact at this point and choose the location to save the “.csv” file.

For the purpose of this code, the location must be the desktop.

When the first file is downloaded the program will show a message box warning that the file has been

downloaded successfully.

After clicking “ok” the program will go through the same process to download the Savings account

information and the following boxes will be seen.

At this point, the program should go to the American Express web page and do a similar process to

download the information about transactions selecting the option “year to date” for the time period.

Unfortunately the “agent” is not being able to interact with Amex’s website and at this point the user will

have to download the file manually.

5

b. Importing data to the spreadsheet

Below is a snapshot of how the spreadsheet looks like (the characters have been changed for privacy

reasons). It has 12 worksheets (one for each month) and stores the data pulled from the statements

previously downloaded. The code sorts the transaction by date and allocates them into the respective

worksheets. To do so, the user just needs to click on the red button “Process Data”.

The first thing the code does is to clear the current content of the worksheets (since it has accumulated

transactions since the beginning of the year. Below is the code lines used to do so.

For monthNumber = 1 To 12

 Windows("Final Project.xlsm").Activate

 Sheets(monthNumber).Activate

 Range("a2").Select

 Range(Selection, Selection.End(xlToRight)).Select

 Range(Selection, Selection.End(xlDown)).Select

 Selection.Clear

 Range("a2").Select

Next

After cleaning the worksheets, the program opens the three downloaded files, eliminates the unnecessary

columns and organizes the files to bring them to the same format. Below is a sample of a line of code to

open one of the files.

Workbooks.Open Filename:="C:\Users\Marcelo\Desktop\MarketRate2.csv"

Since the credit card payment is done through a withdrawal from the checking account, the code needs to

eliminate the payment information; otherwise it would offset the expenses recorded in the credit card

statement and give a wrong result. This task is performed by the following lines of code:

rowNumber = ActiveCell.Row

lastRow = Cells(rowNumber, 1).End(xlDown).Row

For rowNumber = rowNumber To lastRow

 On Error GoTo errorHandling

 Cells.find(What:="AMERICAN EXPRESS", After:=ActiveCell, LookIn:= _

6

 xlFormulas, LookAt:=xlPart, SearchOrder:=xlByColumns, SearchDirection:= _

 xlNext, MatchCase:=False, SearchFormat:=False).Activate

 ActiveCell.Rows("1:1").EntireRow.Select

 Selection.Delete Shift:=xlUp

Next

errorHandling:

Range("a1").Activate

Similar operation is performed in the Amex downloaded statement to delete the lines that record the

payment of the debt because; again, it would offset the expenses and the user would end up with the

wrong result.

The next step is to bring all transactions information to one file (I choose to put everything in the file

downloaded from the checking account). Afterwards the transactions are sorted by date.

At this point the program cuts and pastes the data, month by month, into the respective worksheets in the

original workbook. This is performed by the following lines of code:

For monthNumber = 1 To lastMonth

 Windows("Checking1.csv").Activate

 Sheets("Checking1").Activate

 Range("d:d").Select

 Cells.find(What:=monthNumber + 1, After:=ActiveCell, LookIn:= _

 xlFormulas, LookAt:=xlPart, SearchOrder:=xlByColumns, SearchDirection:= _

 xlNext, MatchCase:=False, SearchFormat:=False).Activate

 endRow = ActiveCell.Row - 1

 ActiveCell.Offset(-1, 0).Select

 Range(Selection, Selection.End(xlToLeft)).Select

 Range(Selection, Selection.End(xlUp)).Select

 Selection.Cut

 startRow = endRow + 1

 Windows("Final Project.xlsm").Activate

 Sheets(monthNumber).Activate

 Range("a2").Activate

 ActiveSheet.Paste

Next

Then some formatting is done to give the final appearance showed above.

Finally, the program will close the downloaded files and delete them from the desktop

Windows("Checking1.csv").Close False

Windows("MarketRate2.csv").Close False

Windows("Summary.xls").Close False

Kill ("C:\Users\Marcelo\Desktop\Checking1.csv")

Kill ("C:\Users\Marcelo\Desktop\MarketRate2.csv")

Kill ("C:\Users\Marcelo\Desktop\Summary.xls")

7

 $(4,000.00)

 $(2,000.00)

 $-

 $2,000.00

 $4,000.00

 $6,000.00

Ja
n

u
ar

y

Fe
b

ru
ar

y

M
ar

ch

A
p

ri
l

M
ay

Ju
n

e

Ju
ly

A
u

gu
st

Se
p

te
m

b
e

r

O
ct

o
b

e
r

N
o

ve
m

b
e

r

D
e

ce
m

b
er

Balance

Balance

With the final result, the user is able to do different kinds of analysis using an neatly organized workbook

that summarizes all of his/her financial operations. As an example, the summary worksheet shows the

balance of each month and shows in red those when expenses were greater than income. The user can do

all sorts of analysis through graphics and identify the causes of deficits and superavits in his/her finances.

To keep this file updated had been a pain to the user and requires a fair amount of time and exposes him

to failures, repetition of values etc. Having this process automatized makes it to take just a couple of

minutes to go through the whole process with no risk of errors.

3. Learning and Conceptual Difficulties

Working with HTML programing language was an extra challenge because it is something completely

new for me and it is very complicated because the html page is dynamic and referring to specific points in

the text is somewhat dangerous because any change in the components before it would make the VBA

code lose the reference to it. Because of that it is necessary when always that it is possible to use relative

references.

Because of time constraints I couldn’t resolve the problem with accessing the American Express page, so

the download of that file is, for now, accomplished manually. Apparently the “agent” needs to be changed

somewhat to resolve this problem, what I plan to do soon allowing the process to become entirely

automated.

