
Matt Blodgett Nibbles VBA Project write-up

Page 1 of 11

Matt Blodgett VBA Project (Nibbles) Write-up

Contents
Executive Summary ... 2

Gameplay .. 2

Creating user-defined levels ... 2

Implementation Documentation .. 2

User Manual .. 2

How to play ... 2

Editing levels ... 4

Technical Description of components .. 6

Main Worksheet ... 7

Level Sets Worksheet .. 7

Edit Level Worksheet .. 7

Common module .. 8

NibblesGamePlay module ... 9

PersistentArray class module .. 9

Discussion of learning points .. 10

Split to store Wall data ... 10

Calls to Win32 API ... 10

Persisting array when forms are hidden ... 10

Protecting sheets .. 11

Checking values in text boxes on Exit instead of Change ... 11

Matt Blodgett Nibbles VBA Project write-up

Page 2 of 11

Executive Summary
For my project, I decided to address the significant lack of Excel games for my young son to play. I

created an excel version of the game ‘Nibbles’ or ‘Snake’.

Gameplay

In this classic game, the user controls a snake on a game board made entirely of squares. The head of

the snake occupies one space on the square, with a long tail trailing behind it. The goal of the game is

for the snake to eat ‘apples’, or red squares with a number embedded in it. Once a certain number of

apples (9 in my version of the game) have been eaten, the level is complete and the snake moves on to

another level. If the snake runs into its own body or the walls of the level, the level must be restarted.

After the snake runs out of lives, the game is over. Scoring is awarded based on the number of the

apple being eaten, a multiplier defined for each level, and a reward for the speed of the snake.

Creating user-defined levels

In order to keep the game fresh, new and entertaining, I added the ability of the user to create new

levels to play. Users can create any number of level sets, with any number of levels. Each level can be

customized in size, starting position, scoring options, and with user drawn walls.

Implementation Documentation

User Manual

How to play

To play Nibbles (snake), simply click on the 'Play Nibbles' button. This will bring up the main menu:

Choose a level set, the starting level, enter the number of lives you with to start with and the starting

speed of the game. Note that speed varies between computers, so you may have to try it out to get

used to it. You can also adjust the speed while playing.

Matt Blodgett Nibbles VBA Project write-up

Page 3 of 11

To play, click the 'play' button. This will create the level and prompt you to start. The playing field will

look different for each level, but will look something like this:

The black outline represents the boundaries of the game, and each square is one spot for the snake to

travel in. The light gray spot is the head of the snake, and the body of the snake trails behind it in dark

gray.

User defined walls are shown inside the box in various colors. If the head of the snake hits any of the

walls, or the body of the snake itself, you lose a life, and must restart the current level.

The objective of the game is to collect the 'apples' (red squares with numbers) on each level. The

numbers appear consecutively 1 - 9. When you hit the number 9, the level is immediately terminated,

and game play moves to the next level.

To play, use the arrow keys to change the direction of the snake. You can make the snake move forward

more quickly by holding down the arrow key in the current snake direction.

Matt Blodgett Nibbles VBA Project write-up

Page 4 of 11

To pause play, push 'P'. To end play, push 'ESC'. Below the playing field you can see your score, the

number of lives remaining, and the current speed of the game. To increase speed, push the '+' button on

your keypad. Conversely, push the '-' button on the keypad to decrease speed.

Points are awarded based on a multiplier for each level, the number that the snake is ‘eating', and a

multiplier based on the speed of the game. The formula is as follows:

Score = Score + (Multiplier * NumberEaten * max(200 – Speed, 1))

Editing levels

To create a level set for the Nibbles game, click 'New Level Set' on the main menu You will then be

prompted to enter the name of the new level set:

After entering the new name, you will then be taken to the edit screen. To delete an existing level set,

simply choose the level set and hit ‘Delete Level Set’ to edit an existing level set, simply choose that level

set, and hit 'Edit Level Set'.

To edit a level, choose the level from the levels box on the left.

You can then edit the options for that level - Name, size, Score multiplier, Starting position and starting

direction.

Use the hyperlink buttons to add new levels, remove levels, and move levels up and down.

Matt Blodgett Nibbles VBA Project write-up

Page 5 of 11

If you want to rename a level set, click the hyperlinked name of the level set.

To draw or change the walls on a level, click the 'Edit Level Walls' hyperlink.

This will take you to the edit level screen:

This is a normal Excel workbook with protected cells. Only the fill coloring will be saved. Use the normal

Excel controls to draw and color walls:

After you are done, hit 'Save'. If you want to go back without saving changes, hit cancel. For help, click

'Help'.

Note that the starting position is labeled 'S' and colored red. Any coloring on this cell will be ignored

when the level is saved.

Matt Blodgett Nibbles VBA Project write-up

Page 6 of 11

Technical Description of components

The VBA project consists of two forms, four modules, and one class module. There are also three

Worksheets in the Workbook, with two of them hidden:

Matt Blodgett Nibbles VBA Project write-up

Page 7 of 11

Main Worksheet

The first worksheet, “Main”, contains the instructions and the button to bring up the main menu. The

“MainModule” module contains only a single method for this “Play Nibbles” button:

Level Sets Worksheet

The second worksheet, “Level Sets” contains the saved data for each level:

The ‘Walls’ data is a string with the following format, with each colored cell represented:

Row,Col,Color|Row,Col,Color|….|Row,Col,Color

This worksheet has no direct code associated with it, but is used as a database to store the level data.

Edit Level Worksheet

The third worksheet, “Edit Level” is the worksheet that is brought up when the ‘Edit Level Walls’ button

is clicked. It has three buttons, with the coloring and rows and cells set in the code for the different

levels. The module “Edit Level Buttons” contains the code for these three buttons.

Matt Blodgett Nibbles VBA Project write-up

Page 8 of 11

Common module

This module contains several code subroutines and functions that are used during both game play and

on the forms to edit the levels. The methods are listed below with descriptoins:

Function GetLevelSetVariable(VarName As String, LevelSetName As String, LevelNum As

Integer)

This function will return a cell value in the Level Sets worksheet. For the particular level set,

level number, and variable name (column in the spreadsheet).

Function GetLevelSetNumberOfLevels(LevelSetName As String)

This function counts the number of levels in the Level Sets worksheet for a given level set.

Sub SortLevels()

This function sorts the levels in the Level Sets worksheet to ensure that level sets are on

contiguous rows and in order by level number

Sub CreateLevel(LevelSetName As String, _

 LevelNum As Integer, _

 levelName As String, _

 Optional CreateNewWorksheet As Boolean = True, _

 Optional Rows As Integer = -1, _

 Optional Cols As Integer = -1, _

 Optional Walls As String = "NONE", _

 Optional ShowMessage As Boolean = True)

This function can create a new worksheet for a level, size the rows and column appropriately,

draw the walls for a given level, and zoom the selection to the playing field. It can also do this

for an existing worksheet (the Edit Level worksheet).

Sub DeleteLevelSet(LevelSetName As String)

This function deletes all rows in the Level Sets worksheet for a given Level Set name.

Function CheckTextNumeric(Text As String, Min As Integer,Optional Max As Integer = -1)

This function is used to make sure that valid values are entered into text boxes on the user

forms

Matt Blodgett Nibbles VBA Project write-up

Page 9 of 11

NibblesGamePlay module

This module has all of the methods for the actual game play. They are listed below with descriptions:

Declare Function GetAsyncKeyState Lib "user32.dll" (ByVal nVirtKey As Long) As Integer

Const KeyPressed As Integer = -32767

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

These functions and constant are used to interact with the windows API and allow the user to

interact during the game.

Sub IncrementNumberToFind(CurNumber As Integer, CurNumberX As Integer, _

 CurNumberY As Integer, Rows As Integer, Cols As Integer, Score As Integer, _

 Multiplier As Integer, Speed As Integer)

This function increments the number to find, chooses a new random location, erases the old

number, and draws the new one.

Function PrintSnake(snake) As String

 This is a debugging function to print out the array holding the snake positions.

Function MoveSnake(snake, xDir As Integer, yDir As Integer) As String

This function moves the snake in memory (switching positions in the array), and then erases the

tail and draws the head on the actual gameboard.

Sub GrowSnake(snake, CurNumber As Integer, Multiplier As Integer)

This function grows the snake by the given amount (resizes the array and fills the new spots in

the array with the tail value)

Public Sub UpdateScoreAndLives(Rows As Integer, Score As Integer, Lives As Integer,

 Speed As Integer)

 This function updates the score on the gameboard.

Public Sub PlayGame(StartLives As Integer, Speed As Integer, LevelSetName As String,

 StartingLevel As Integer)

This function is the actual gameplay. It executes until the game is over, and checks for user

input using the Win32 API. It then ‘pauses’ a given number of milliseconds before moving the

snake to the next spot, checking to see if it was a valid move, etc.

PersistentArray class module

This class was created to persist an array in a form while it was hidden. It has only one variable (the

array) and subroutines and functions to get and set and resize the array. It will be discussed in greater

detail in the learning points.

Matt Blodgett Nibbles VBA Project write-up

Page 10 of 11

Discussion of learning points

Split to store Wall data

One of the most useful functions that I had to learn about during this project was the Split function in

VBA that takes a string, and splits it on a delimeter, creating an array. I used this twice on the Walls

parameter that I save for each level:

'Parse the walls and draw them

'Our format is Row,Col,Color|Row,Col,Color|Row,Col,Color

'Row,Col of 1, 1 mean the topleft corner that they could draw in (B3 on our spreadsheet)

Dim WallArray, WallArrayItem, ItemArray

WallArray = Split(Walls, "|")

 For Each WallArrayItem In WallArray

 ItemArray = Split(WallArrayItem, ",")

 newSheet.Cells(ItemArray(0) + 2, ItemArray(1) + 1).Interior.Color = ItemArray(2)

 Next

Calls to Win32 API

Perhaps the biggest challenge I faced was how to allow the user to interact with the game while the

subroutine is still running. Initially, I thought I would use the Application.OnTime function in Excel,

which would call the same routine at a point in the future. This would have worked, but the OnTime

function will only execute one second later. I needed to ‘pause’ for less than a second.

After doing some research on the internet, I found that VBA can call external functions in the windows

32 API. I therefore use the Win32 ‘Sleep’ function to ‘pause’ execution for several milliseconds. I also

use the ‘GetAsyncKeyState’ Win32 function to check for keystroke input from the user. I also discovered

the DoEvents function in Excel which will let the user interact with Excel during execution of a

subroutine.

Persisting array when forms are hidden

One of the most interesting challenges I had was in trying to have the ‘Edit Level Set’ form be done

completely in memory so that the user could cancel. Everything was fine because I loaded the level

information into an array in memory.

However, when I hid the form to show

the ‘Edit Level’ worksheet and allow

the user to interact and draw the walls,

the array variable was being cleared. I

tried to make it a Public variable so it

would persist even when the form was

hidden, and was given this error:

Therefore, in order to persist this

Matt Blodgett Nibbles VBA Project write-up

Page 11 of 11

variable across the form, I created a new class module that had an array inside of it, and then used this

object to access the array in my form. The new declaration is this:

Public LevelHolder As New PersistentArray

This then persists the object even when the form is hidden.

Protecting sheets

I was concerned that when the user was going to edit the level walls, they were going to mess up other

things on the worksheet while editing (resize columns, delete rows, move the buttons, etc.) I discovered

the Protect worksheet function in Excel, and used the macro recorder to discover how to use that in

VBA.

Checking values in text boxes on Exit instead of Change

The last thing that I learned while doing this was when I wanted to put validations on the text boxes (for

example, the lives must be numeric and greater than 0). As I did this, I initially had it in the Change

event on the textbox. However, this fired on every keystroke. Therefore, I had to put it on the Exit

event of the textbox. I also wrote a generic function to do these validations that I could call for each text

box:

Function CheckTextNumeric(Text As String, Min As Integer, Optional Max As

Integer = -1)

 CheckTextNumeric = Text

 If Not IsNumeric(Text) Then

 CheckTextNumeric = Min

 ElseIf CInt(Text) < Min Then

 CheckTextNumeric = Min

 ElseIf CInt(Text) > Max And Max > -1 Then

 CheckTextNumeric = Max

 End If

End Function

This could then be called as follows from the text box Exit event:

Private Sub txtSpeed_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 txtSpeed.Text = CheckTextNumeric(txtSpeed.Text, 1)

End Sub

