
Michael Blodgett
MBA 614
12/09/10

Executive Summary

Leaders in my church leaders often speak about the importance of keeping a food storage to

prepare for times of need such as natural disaster or economic downturn. My wife and I have

made a weak effort to follow this counsel at times, but we would like to do better. My

problem is that I do not have a systematic way to keep track of what we have or what we are

likely to need.

To help myself to better focus my food storage efforts, I have created an Excel workbook that

allows me to enter food storage goals and track current storage levels. I can then see how I

am doing relative to my current goals at any given time.

Implementation documentation

To have my workbook function the way that I wanted, I thought of it like a relational database

with several different tables. I set up several user forms to collect the information to populate

these tables. Below is a screen shot of the first worksheet in the workbook. The worksheet

contains buttons that open the user forms or move to another place in the workbook.

The first table that needs to be populated is a list of inventory items. I set up a user form to

allow myself to enter the types of items that are (or should be) in my food storage. Below is a

screenshot of what the form looks like. It is accessed with the “Add Item Types” button.

The “Add More” button saves the items to the “Item Listing” tab and clears the form so that

more items can be entered. The data in the item listing tab is sorted alphabetically, and blank

rows in the data are deleted each time new items are added. The “Finished” button adds the

items and closes the form. After items are in the item listing, the user is then able to enter

goals or current food storage levels.

 I will first look at the process of adding inventory amounts. There are two different forms

that allow the user to do this. The first is with the “Enter Beginning Quantities” button. This

produces a form that allows the user to enter multiple amounts on the same form.

There are 15 comboxes on the form that are populated from the inventory listing. When a

change is made to the combobox, a label displaying the unit of measurement (pounds, gallons,

etc.) is automatically updated next to the quantity. There is a separate combo box on the right

side of the form that allows the user to enter an expiration date. I chose to set up another table

with possible expiration dates. The date comboboxes are populated from this list. The “Add

More” and Finished buttons function much like those on the previous form, but this time the

amounts are updated to the “Inventory Detail” worksheet. Like the inventory listing, the

inventory detail is sorted by item and date each time new items are added.

There are also buttons and forms for routine additions and removals after the initial setup.

These forms allow the user to add or remove item s one at a time.The “Add Inventory” form

has the same functionality as the “Enter Beginning Quantities” form.

The “Remove Inventory” form allows the user to select any items that currently exist in the

Inventory Detail list. When the user clicks the expiration date, the “Quantity” text box is

populated with the current inventory level for the selected item and expiration date. I added

this as a way to decrease the likelihood that I would accidentally remove more items than I

currently had in storage. In addition, if the user tries to select an item with no current

inventory in the “Remove Inventory” form, they will get an error saying that no inventory is

listed for that item. I tried to add data validation functions in the program wherever I could,

but that is an area that should still be improved.

The “Goals and Progress” button on the home tab, takes the user to the goals worksheet. This

worksheet will initially be blank. When the user clicks the “Update and Recalulate” button,

the first column is populated with the inventory listing. The current inventory summarizes the

information for each item in the inventory detail worksheet. There is no user form for the

goal quantities. I felt it would be better to input the amounts directly into the worksheet. If

any goals or inventory amounts are modified, the user can again click the “Update and

Recalculate” button to update the Inventory amounts and the difference column. The

difference is simply the current inventory minus the goal for that item. The difference is

highlighted green if current levels are above the specified goals. Otherwise, they are red. To

the right is the error that is produced if any value other than a nonnegative number is entered.

At the top of the goals tab, is a button that reads “Email Results”. When the user clicks this

button, an input box ask them for an email address. I created a gmail account with address

vbafoodstroage@gmail.com through which the programs sends the emails. The email

includes the values from range beginning in cell A2 through the last value in column E. I

modified the formatting so that the report in the body of the email is still in the proper rows

and columns, but that is another area that I should improve.

mailto:vbafoodstroage@gmail.com

Learning and Conceptual Difficulties

I had zero programming experience prior to taking this class, so I learned a great deal going

through this project. I struggled with the logic behind a lot my code initially, but I was

eventually able to think through most of it. While I was eventually able to do most of the

things I wanted to do, I probably did them in ways that was not very efficient. I relied very

heavily on loops to do perform a lot of my tasks. I feel like my code would have been much

more efficient if I had a better understanding of arrays and how to use them.

One example of writing inefficient code had to do with one of my user forms. I had 15

comboboxes that I needed to perform essentially the same task. I needed each of them to

trigger some event when they were changed. I copied the “ComboBox_Change”

subprocedure 15 times in my code, but I imagine there was a better way to do this. I probably

should have asked for help on that. I also struggled with how to include information from my

workbook in the body of the emails that the program sent. I eventually used some formulas to

get the email data to stay in a format is somewhat easy to follow. I researched the issue

online and didn’t find any good solutions, so I probably should have asked for help on that

part of the program.

Overall, I feel like the project allowed me to become much more comfortable using VBA. I

was able to practice and review the areas we have focused on in our assignments and class

examples as well venturing into several other new areas. Between this project and the user

form homework assignment, I feel comfortable using user forms. I also discovered other

areas that I’d to learn more about in the future. Perhaps the biggest benefit I gained from the

project is an increased confidence going forward. I learned of the vast resources that are

available to help me in the future. This project forced me to look beyond the textbook to

online tutorials and examples. I will be more comfortable attempting to write programs in the

future knowing that with my basic knowledge of VBA and these resources, I can do some

powerful things.

