Jessica Nash
Final Project
MBA 614
Food Storage Inventory Manager

Executive Summary

The Problem

Whether it’s a one year supply of food or just a well stocked pantry, it can be difficult to keep
track of the expiration dates of stored food. Letting food expire is not only frustrating, it wastes
both time and money. Keeping track of expiration dates by hand can be repetitive and boring—
meaning it just won’t get done.

The Solution

The Food Storage Inventory Manager is a simple and easy to use tool for keeping track of your
food storage. A collection of user forms allows even the least computer savvy user to add
purchases, sort the inventory by either item type or expiration date, and record when an item is
used up. The inventory manager can be updated either manually or with a barcode scanner
(CueCat), which means the novelty of the system just might last longer than that clipboard.

Implementation
The user begins at the Welcome page, where they can choose between three actions: add a

purchase, view an inventory snapshot, or record the use of an item. The entire program is
designed to be highly user-friendly so that anyone without experience with Excel can use it.

" Food Storage Inventory Manager

Choose from the options below to manage your food storage!

Add an purchase to the inventory

This program was
created by JessicaNash,
astudent at Brigham
Young University.

View a snapshot of your inventory

For more information,

you can contact herat
Jnashiv@gmail.com

Record using up an item

Add a purchase to the inventory

The user begins by entering purchases into the system. The user can choose to do this manually,
or by using a CueCat barcode scanner. The programming for both methods was pretty similar,
the differences with the CueCat method will be described later.

New purchases can be recorded by using the form shown below. In order to maintain
comparability with multiple purchases of the same product, this inventory system uses an Item

Jessica Nash
Final Project
MBA 614
Key as a master list of possible items. If the user is entering the purchase of a new kind of item,
they can select the “Add new item” button (circled).

) Add Purchase | RS |

Select the item you added to your food storage from the drop down box.
I = I

1@ | Date canned/purchased | 0C

Mumber of units

Expiration date

I
Cost per unit |
I
I

Motes

Add new item '

This brings up the “New Item” form. A combo box is populated from the item types column in
the item key sheet, and the user can fill in the remaining information. Selecting “OK” adds the
item to the Item Key (shown below the form) and returns the user to the Add Purchase userform.

MNew Item | % |
; | Store bought ﬂ
3 Type of item E
Item Mame |
I Expected Life | r
Units |
ex. 16 oz cans
Motes |
OK | Cancel |
-
h
| = ¥
A B [3 D E F [H 1 I K L M N
Type !Barcodeﬂ Item Name Expected Life Notes Units Types
Store bought Bread Flour 5 years 10 |Ib bags ‘White 45 |bs Bucket
Store bought C&H Sugar 5 years Stored in bins 10 Ib bags #10 Cannery Can
#10 Cannery Can Chopped Dried Onion 10 years Cans Store bought
Store bought Honey 3 years 3 b bottles Scanned
#10 Cannery Can Hot Cocoa Mix 10 years Cans
#10 Cannery Can Macaroni 30+ years Cans
Store bought Peanut Butter 10 months 48 oz jars
#10 Cannery Can Rolled Oats 30+ years Cans
I Store bought Spaghetti Sauce 1 year jars
[l White 45 lbs Bucket Wheat 30+ years Bucket
[#10 Cannery Can White Rice 30+ years Buy less next time Cans
F #10 Cannery Can White Sugar 30+ years Cans
k2 Scanned 19900003202 Clabber Girl Baking Powder 10 OZ. (284g)
=
E

The user begins to add an item by selecting the item name from the combo box (circled below).
If the user first adds a new item, it will already be available in the combo box. After filling out

Jessica Nash
Final Project
MBA 614

all the information, selecting “OK” puts the values input by the user into the inventory sheet, and
the inventory sheet is activated with the new addition selected.

Add Purchase

Date canned,purchased

Mumber of units

Expiration date

I
Cost per unit |
I
I

1

DC

Motes
Add new item Cancel ‘
\.
A B c D E F H 1 J
Type Item Name Bar Code Number Units Notes #ofunits Date Canned/purchased Cost/Unit Expiration Date
#10 Cannery Can Wacaroni Cans 4 2/5/2010 51.03 2/5/2015
Store bought Peanut Butter 48 0z jars 10 3/1/2009 57.00 5/1/2010
White 45 Ibs Bucket Wheat Bucket 5 2/3/2004 56.80 2/3/2034
#10 Cannery Can White Rice tans Don't buy more for awhile 4 3/1/2001 5350 3/1/2031
Scanned Clabber Girl Baking Powder 19900003202 10 OZ. (283g) 3 4/1/2008 52.80 5/2/2011
[#10 Cannery Can Chopped Dried Onion Cans 4 3/1/2008 52.50 5/1/2012

The code for this action is fairly simple, first the next available row in the inventory is located:

[Private Sub cmdOX Click()
Dim x A= Integer

'find the next available row
®x = 2

Do Until Sheets("Inventory").Cells(x, 2).Value

x==x+1

Loop

Then the item type and units is looked up on the item key page:

= nmw

Jessica Nash
Final Project
MBA 614

"find the type
Sheets ("Item Key") .Activate
Cells.Find (What:=cboltem.Value, after:=Range("al"), LookIn:=xlFormulas, _
LookAt:=x1Part, SearchOrder:=xl1ByRows, SearchDirection:=xlNext, _
MatchCase:=False, SearchFormat:=False).Activate

AotiveCell.Offsetc (0, -2) .5elect

Selection.Copy

Sheets ("Inventory") .Activate
Cell=s(x, 1).S5elect

ActiveSheet.Faste

'find the units
Sheets ("Item Eey"™) .Activate
Cells.Find (What:=cboltem.Value, after:=Range("al"), LookIn:=xlFormulas, _
LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _
MatchCase:=False, SearchFormat:=False).Activate

AotiveCell.Cffsec (0, 3).5elect

Selection.Copy

Sheets ("Inventory™) .Activate
Cell=s(x, 4).5elect

ActiveSheet.Paste

Lpplication.CutCopyMode = False

Finally, the fields entered by the user are copied into the form and the new row is selected:

'copy in from form

Sheets ("Inventory") .Cells(x, 2).Value = cboltem.Value
Sheets ("Inventory™) .Cells(x, 7).Value = txtPurchdate.Value
Sheets ("Inventory™) .Cells(x, 6).Value = txtNumunits.Value
Sheets ("Inventory") .Cells(x, 8).Value = txtUnitcost.Value
Sheets ("Inventory™) .Cells(x, 9).Value = tCxtExpiration.Value
Sheets ("Inventory™) .Cells(x, 5).Value = txtNotes.Value

Sheets ("Inventory") .Activate
Bows (x) .Select

Unload Me

End Sub

Add a purchase using the CueCat

To use the CueCat, the user is first prompted to scan the barcode into an input box:

Scan the barcode here

Aan nnrchaca ta tha imveantnamg

Once the scan is completed, the scan is converted into a barcode by using the cuecat function
given in class. Then a web query is run to look up the item name and unit information at
upcdatabase.com. This is done by creating a “lookUpitem” subprocedure, shown below.

Jessica Nash
Final Project
MBA 614

Sub lookUpitem(barcode &A= S5tring)

LetiveWorkbook.Worksheets. Add
With ActiveSheet.QueryTables.Add (Connection:= _
"OURL;http://www.upcdatabase.com/item/0" & barcode, Destination:=Range ("Z1")
.FieldName=z = True
.RowNumbers = False
.FillAdjacentFormualas = False
PreserveFormatting = True
.RefreshCnFileCpen = False
BackgroundQuery = Trus
.RefreshStyle = x1lInsertDeleteCells
.5avePassword = False
.5aveData = True
AdjustColumniWidth = True
.RefreshPeriod = 0
.WebSelectionType = x1A411Tables
WebFormatting = xlWebFormattingNone
.WebPreFormattedTextToColumns = True
.WebConsecutiveDelimitersfAsCne = True
WebSingleBlockTextInport = False
.WebDi=sableDateRecognition = False
.WebDisableRedirections = False
.Refresh BackgroundQuery:=False
End With

Cells.Find(What:="Description”, after:=ActiveCell, LookIn:=xlFormulas, _
LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _
MatchCase:=False, SearchFormat:=False).Activate

LeotiveCell . .Offzet (0, 2) .Activate

itemMame = ActiwveCell.Values

Cells.Find(What:="gize", after:=ActiveCell, LookIn:=xlFormulas, _
LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, _
MatchCase:=Fal=se, SearchFormat:=False).Activate

LeotiveCell . .Offzet (0, 2) .Activate

itemSize = ActiwveCell.Value

End Sub

The sub is passed the barcode number by the userform_initialize subprocedure, shown below.
Although creating the web query was not too difficult, it was tricky to determine where it should
g0 so as to not confuse the user. This subprocedure determines the barcode number, turns off
screen updates, runs the web query (which also finds the itemName and itemSize variables),
deletes the webquery sheet, and copies the name, units, and barcode into the form.

Private Sub UserForm Initialize ()
barcode = cueCat(scan, 3)
Ppplication.ScreenUpdating = False
loockUpitem (barcode)

'delete the guery page
Application.DisplayiAlerts = False
BActiveSheet.Delete
Application.DisplayhAlerts = True
Application.ScreenUpdating = True

txtHame.Value = itemName
txtlUnits.Value = itemSize
txtBarcode.Value = barcode

FEnd Suh

Jessica Nash
Final Project
MBA 614

The resulting userform is very similar to the manual method user form for entering a purchase,
except the Item Name, Units, and Bar Code boxes are already populated.

“EarCodeSGm

Item Name | SWansen Chicken Broth 89%Fat Free

_—— | 14.50z (411g)
Bar Code | 051000024312

Add the rest of the details about the item and edit the fields above if
NECESSAry.

Date canned,/purchased I |

Number of units I

Cost per unit

|
Expiration date I
|

Motes

The user can fill in the remaining fields, and edit the already populated fields as necessary.
Selecting “OK” does the same as manual method, with the exception of searching the item key to
see if this is a new type of item, and adding it to the item key list if it is. This is done by the

following code:

Private Sub cmdOK Click()
Dim v As Integer

Dim found &s String

Dim nextBeyline As Integer

'add it to the item key if unigque
found = "no"
vy =2
Do Until Sheets ("Item Key™) .Cells(y, 3) = "7
If Sheets("item Key"™) .Cells(vy, 3).Value = itemMame Then

found = "yes"

vy =y + 1
Els=e

vy =y + 1
End If

Loop

'if not already there, add to the item key
If found = "no™ Then

nextFeyline = 2

Do Until Sheets("item key") .Cells (nextFeyline, 3) = "¢
nextBeyline = nextKeyline + 1

Loop

Sheets ("Item key™) .Cells (nextEeyline, 1).Value = "Scanned"

Sheets ("Item key™) .Cells(nextEeyline, 2).Value = barcode

Sheets ("Item key™) .Cells (nextEeyline, 3).Value = itemName

Sheets ("Item key™) .Cells (nextEeyline, 6).Value = itemSize
End If]

Jessica Nash
Final Project
MBA 614
View the inventory snapshot

At any time the user can view in the inventory currently entered in the system. After choosing
“view options” the user can choose the type of view they would like to see. Choosing either of
these options performs a sort of the inventory and takes the user to the inventory page.

I View Inventory @

0| Please select the inventory snapshot you wauld like to see.

3 E.
‘ By Expiration Date |

By Item Type ‘

Cancel

————————————

For example, choosing to view by item type sorts the inventory list first by item type, then by
expiration date. Below is the code that accomplishes this. The sort code for sorting by
expiration date is very similar.

Private Sub cmdItemtype Click()

Unload Me

Sheets ("Inventory") .S5elect
Range ("bl"™) .Select
RctiveWorkbook.Worksheets ("Inventory™) .S5ort.SortFields.Clear
RctiveWorkbook.Worksheets ("Inventory™) .5ort.S5ortFields.Add Key:=Range (RctiveCell, ActiveCell.End(xlDown)),
SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal
Range ("il"™) .Select
RctiveWorkbook.Worksheets ("Inventory™) .5ort.S5ortFields.Add Key:=Range (RctiveCell, ActiveCell.End(xlDown)),
SortCn:=xl1S5ortOnValues, Crder:=xllAscending, Datalption:=xlSortHormal
Range ("al™) .S5elect
With ActiwveWorkbook.Worksheets ("Inventory™) .Sort
'make sure below refers to the last column in the table
.S5etRange Range (RctiwveCell, Range ("il"™).End(x1Down)
.Header = xlYes
.MatchCa=ze = False
.Crientation = x1TopToBottom
-SortMethod = x1PinY¥in
.Bpply
End With

Range ("b2") .S5elect

End Sub

Here is a screenshot of the inventory sorted by item type (and then by expiration date).

A o v u c r = n] 4
Type Item Name Bar Code Mumber Units Notes # of units Date Canned/purchased Cost/Unit Expiration Date
Scanned Itamébells Condensed Cream of Mushroom Soup ! 51000012616 103/40Z 5 4/6/2006 $3.50 2/5/2025
#10 Cannery Can Chopped Dried Onion Cans 4 3/1/2008 $2.50 5/1/2012
#10 Cannery Can Chopped Dried Onion Cans 8 6/1/1999 $6.00 5/8/2020
Scanned Clabber Girl Baking Powder 15900003202 10 OZ. (284g) 3 4/1/2008 $2.80 5/2/2011
#10 Cannery Can Macaroni Cans 4 2/5/2010 51.03 2/5/2015
Store bought Peanut Butter 48 oz jars 2 3/1/2009 $7.00 5/1/2010
Scanned Swanson Chicken Broth 99%Fat Free 51000024312 145 oz (411g) 50 5/2/1999 5450 5/2/2003
Scanned Swanson Chicken Broth 99%Fat Free 51000024312 145 oz (411g) 5 12/7/2010 50.99 12/7/2012

1 |Store bought Water Bottles 17 oz bottle 5 2/5/2010 $3.00 2/5/2011

L |White 45 Ibs Bucket Wheat Bucket 5 2/3/2004 $6.80 2/3/2034

4 3/1/2001 5350 3/1/2031

1 |#10 Cannery Can White Rice Cans Don't buy more for awhile

Jessica Nash
Final Project
MBA 614

Recording using an item

Similar to adding an item, recording the use of an item can be done either manually or by bar
code scanning. After selecting the option to remove an item manually, the inventory page is
activated, and the following userform is opened. First the user selects the item type taken out
from the combo box populated from the item key. If the item selected is not currently in the
inventory, a message box appears to alert the user.

~ -

Bar Code Num| Remove Item {3 Jeanned/purcr
510000124 | af)

3/
i B/
199000033 Spaghetti af
paghe - L

J 2!
3/
510000243 | s/
510000248 Step 2 - Update with how many units you used. 1 1;:;
| 2
lem | | 3/

Expiration Date
Amount

Units you used

Step 1 - Select the type of item you used.

Update! | Cancel ‘

After choosing to select the item (if it is in the inventory), the item name, expiration date, and

amount of units is populated into the form. The program automatically chooses the item entry
with the earliest expiration date, assuming that is what gets used up first. All the user needs to
do is enter how many units they used.

o Remove e ' L)
Step 1 - Select the type of item you used. !

E Macaroni j

3 Select This Ttem

Step 2 - Update with how many units you used.

(=l

Ttem | Macaroni
Expiration Date 2/s5{2015
Amount 4

Units you used El

Update! ‘ Cancel ‘

If the user inputs more units than are in the record, a message box alerts them to change the
amount, otherwise the record is updated. If the same number of units are entered as used as are
in the system, the whole row is deleted, otherwise the difference between what was there and
what was used is put into the number of units column.

- D | E T— ~
dum| Remove ltem [2 J|can
1125

Step 1 - Select the type of item you used.
@ Macarani j =
1243 Select This Item

- 5
1243 Microsaoft Excel - — @

Entered more units used than started with, try again

S ——————————

Update! | Cancel l

Jessica Nash
Final Project
MBA 614

The code below brings in the item searched for at the top of the form, and populated the
information in the bottom of the form. The data is sorted by item type when the form initializes,
so the first matching item name is also the one with the earliest expiration date. The program

pulls the expiration date and number of items information into the form.

Frivate Sub cmdSelect Click()
lDirr. found As String

'find the item

found = "no"™
x =2
Do Until Sheets("Inventory").Cells(x, 2) = "" Or found = "yes"
If Sheets("Inventory").Cells(x, 2) = cbhboltem.Valus Then
found = "yes"
x=x + 1
Elsze
x=x + 1
End If
Loop
'put the item info in the form
If found = "no" Then MsgBox "Item not found, please try again”
If found = "yes" Then

'need to know what row the item is on...
®x=x -1
txtItem.Value = Sheets ("inventory™) .Cells(x, 2).Value
txtExp.Value = Sheets ("inventory™).Cells(x, 9).Value
txtimount . Value = Sheets ("inventory™) .Cell=s(x, &).Values
Rows () .S5elect

End If

End Sub

The code to update the number of units first checks to make sure that the number fits, then either

deletes the row or updates the number of units.

Jessica Nash
Final Project
MBA 614

Priwvate Sub cmdUpdate_Click()

If unitsUsed > txtAmount.Value Then
M=gBox "Entered more units used than =started with, try again”
txtAmountused.Value = ""
Exit Sub

End If

If unitsUsed <= txtAmpount.Value Then
unitsLeft = txtAmount.Value - unitslUsed
'"M=gBox unitsLeft
If unitsLeft = 0 Then Rows (x) .EntireRow.Delete
If unitsLeft > 0 Then
Sheets ("Inventory") .Cell=s(x, &).Value = unitcsLeft
End If
End If
Sheets ("Inventory™) .Range ("al") .5elect

Unload Me

End Sub
Frivate Sub txtAmountused AfterUpdate ()

unitslUsed = txtAmountused.Value

End Sub

Challenges and Learning

One of the biggest challenges for me was creating a project that could be easily used by someone
without much knowledge of Excel. I carefully tried to avoid the user getting stuck on a page that
they didn’t know what to do with, or how to navigate away from. I also wanted to make a very
practical program that could really be used effectively. One thing I decided from the beginning
is that an item key would keep things clean. When I added the CueCat capability, I wasn’t sure
initially how to make it work with the item key, but then I added the step to check for new items
when something is scanned in.

This project incorporated a lot of what we learned in class; web queries, userforms, loops, and
barcode scanning. I learned a lot from the experience of putting all those concepts together and
building something from scratch. I didn’t learn a lot of new topics, but I did gain more
understanding of what I had learned in class. I also found that the basic nomenclature has come
a lot easier since working on this project, as before I would have to look up almost any line of
code I wanted to write.

