
Pick Me! The Application Selection Process Assistant

Jessica Irwin
MBA 614

Executive Summary

Motivation
For the past two years I have had the opportunity to work as an accountant and program
manager in the Mathematics Department. I work closely with a yearlong program called the
IMPACT Program, which trains students in high-level research in mathematics and statistics
(www.impact.byu.edu). As the National Science Foundation provides funding, each student
receives a $10,000 scholarship to be a part of the program. The program is highly competitive
and we receive over 30 well-qualified applications from students per year. However, we can
accept only 10 students.

Over the past two years, I have spent many hours collecting and preparing the data received
from applicants. Currently, I use a spreadsheet in GoogleDocs to store most of the data (some
information is not stored there for security reasons), but I would like to present the data to the
program directors in the most simplest and user-friendly way possible. I would also like to keep
all application information in one secure place.

My Solution
In order to assist in the selection process of our future year’s cohort, I was able to use the tools
within Excel and Visual Basic to streamline the collection of large amounts of information from
the applicants. Through Visual Basic, I was able to extract data from the application (a Word
document) and write that data into a worksheet. This will allow the user to save a lot of time
and energy by not manually inputting each applicant’s information. The data extracted from
Word includes the applicant’s name, contact information, GPA, gender, and other relevant
information we use in making our decisions. User forms were created to search, view, and edit
the applicant information, allowing for easy changes to the data if needed. I was also able to do
some analysis on the group of applicants—such as rank the students in order of highest to
lowest overall and major GPA. In addition, I automated the creation of an interview schedule,
as well as creating a user form for the email of acceptance and rejection letters. I feel that I
was able create a program that could be adapted to other application and interview processes
that occur in the Mathematics Department, and not only for the IMPACT Program.

www.impact.byu.edu

Implementation

Upon opening the Excel file, a user is greeted with the following view:

The following user form is displayed, allowing the user
to select one of five options:

1. Import Data
2. Search
3. Applicant List
4. Email
5. Interviewing

In addition, a tab called “Applicant Statistics” has been
added to the file. Each of these options and the
functions they perform will be described in detail.

Import Data
The import data function allows a user to
extract data from a Word document and
place it onto the “Applicant Info” sheet in the
workbook. This eliminates the need for data
entry of the applicant’s name, contact
information, major/minor, gender,
citizenship, and GPA. As the subprocedure
runs, it opens up the Word document
selected by the user. Next, it selects and
copies all the data from the Word document,
and pastes that information into a temporary
worksheet in the Excel workbook.

Then, the subprocedure extracts the data from the imported string using the “instring”
function. The data extracted is placed onto first blank row in the “Applicant Info” sheet in its
correct column. In this example, Rachel Messick’s application data was imported into the
worksheet from her Word document application:

Once the data is placed into the worksheet, the temporary sheet is deleted and all the data in
the worksheet is sorted by last name and is formatted correctly through the assistance of a
recorded macro.

Search
The purpose of the search button is to provide the ability for the user to search through the
applicants by typing all or part of the applicant’s first and/or last name. Once the required

input has been entered in, the user is able to select
either “Find First” or “Find Next.” These functions
employ the use of loops, if, and instring functions. If
the “Find First” button is selected, the subprocedure
will find the first instance of the inputted criteria in

the “Applicant Info” worksheet. For example, if the first name of David was entered in the user
form and “Find First” was selected, the name of the applicant David Denny would be returned.

If the “Find Next” button is clicked, the subprocedure will find the next instance of the inputted
criteria in the “Applicant Info” worksheet. With this example, the “Find Next” button would
return the name of David Part. If clicked again, the applicant David Willey would be displayed.

Although the search function is pretty useful, it becomes even more useful when you can find
an applicant and edit any applicant data that needs to be changed. For example, the applicant
may inform the user of an email address or phone number change, or his/her GPA could have
adjusted. The “Edit” button on this user form allows for the user to edit the applicant data.
The edit form is able to open the applicant’s information by linking the row number from the
search form to the row number for the edit form.

The applicant name, email, phone number,
major, minor, overall GPA, and major GPA can be
edited simply by deleting the current data and
typing in the new, correct information. If an
applicant has mistakenly put the wrong gender
on his/her application, a change can be made by
selecting the correct gender in the combo box.
Finally, a change in the U.S. citizenship of an
applicant is changed by selecting either the “Yes”
or “No” option button.

Once the changes have been made, the user simply clicks the “Save” button and those changes
will be saved by writing the information to the “Applicant Info” worksheet.

Applicant List
By selecting the “Applicant List” option, the user is able to
view each applicant’s information. Their name, information,
and picture are brought in from the worksheet and
displayed on the form. The user is able to click the
“Previous” and “Next” buttons to see each applicant, which
is done simply by “if” functions. Just like the search form,
this form allows the user to edit the applicant’s information.
Once “Edit” is clicked, the same user form used to edit the applicant data is displayed and the
user is able to edit the data. This is done the same way as the search form.

Email
A very useful function of this program is the ability for the user to email applicants. Once the

“Email” option has been selected, an input box is displayed. The user is
to enter the username and password of his/her email address. The
inputs are then saved as a string to be used to send the email. Since we
use a Gmail account in the IMPACT Program, this function was created
to work with Gmail. After the user has entered the username and

password and clicked OK, another user form is displayed:

Here, the user is able to email all applicants, accepted applicants, or rejected applicants by
selecting one of the three option buttons. Once a option button has been selected, the email
addresses appear in the box below the buttons. In order to populate the text box with the
correct emails, I used a “Do Until” loop that loops through all the email addresses on the
“Applicant Info” worksheet. If the “All” button is selected, the loop simply brings in all the
emails until it comes to a row with nothing in it. If the “Accepted” button is select, the loop
brings in the emails that have the word “Yes” under the “Accepted” column. This is done by a

simple “If” function. The same process is used for the “Rejected” button. Once all of the emails
have been inputted, the last two characters of the text box are deleted (“, “).

The user then can type a subject, message, and attach a file to the email. Once the email is
ready to be delivered, the “Send” button sends the email to the selected applicants. The
“sendGmail” function provides the means to send the email. The username and password from
the “Log In” user form are passed to the function, along with the message, subject, and
attachment that are typed by the user in the “Email” user form. The recipients of the email
depend on which option button was checked, as explained before. With the “All” option
button selected, all the email addresses are passed to the function with a “Do Until” loop. With
the “Accepted” or “Rejected” option button selected, it gets a bit more complicated. Through
the use of a split function, each of the email addresses in the text box of recipients was split
into an array, called “splitEmails.” Each email address became a value in the array and with the
help of a “For” loop, each email address in the array was passed to the “sendGmail” function.

If the email was successfully sent to an applicant, the date and time it was sent appears in the
“Email Sent” column. If the email failed, the text “Bad Email” appears in the “Email Sent”
column of the applicant.

Interviewing
The Interviewing button allows a user to select an interview time for each applicant. A list box
was used to load the day and time of each interview session from the “Interview Schedule”
worksheet.

The user is able to scroll through the each applicant using the “Previous” and “Next” buttons.
Once the desired applicant is displayed, a day and time for the interview can be selected from
the list and if the user clicks “Save”, the interview day and time will be listed next to the
applicant’s name on the “Interview Schedule” worksheet. The string variable “listTime” was
created by combining the selected row’s value in the first column (the day of the week) and the
value of the second column (the time). Then, a loop is created to match the “listTime” value to
the “time” string, which is the day and time from the “Interview Schedule” worksheet. Once
these two values are equal, the subprocedure writes the name of the applicant next to that day
and time. Then day and time that was assigned to the applicant disappears from the list in
order to prevent double-scheduling interviews.

Applicant Statistics Ribbon Tab
The “Applicant Statistics” ribbon tab consists of two buttons: (1) Rank Overall GPA and (2) Rank
Major GPA.

These buttons allow the user to rank the overall and major GPA of the applicants in order from
highest to lowest. The subprocedure was started by creating a macro, with some additional
VBA modifications. First, information from the “Applicant Info” worksheet is copied onto the
“Overall GPA Ranking” or “Major GPA Ranking” worksheet. The information is then sorted by
either overall or major GPA. Lastly, the worksheet and data are reformatted (excess columns
deleted, autofit columns, reformat numbers, etc.). This provides the user with some valuable
comparative information that can prove to be useful in his/her decision making.

Learning and Conceptual Difficulties

Importing and Parsing Data from Word Document
One of the biggest difficulties for me in completing my project was learning how to import and
parse the data from a Word document. Even though I had not initially proposed to do this in
my project, I decided that this method of inputting data would be a lot more user friendly and
more useful than inputting the data by hand into a user form. I spent a large portion of my
time searching Google and learning how to do this. I found that it is more common for VBA
programmers to write data from Excel into Word, instead of the other way around, which is
what I was trying to accomplish. I found quite a few forums and threads of people attempting
to write data from Word to Excel, but very few that I tried actually worked. Then I finally found
a site that gave me the foundation and I was able to build my subprocedure off of that example.

I also had to spend a large amount of my time parsing the data from the Word document. The
IMPACT Program application, when saved as a string in Excel, had a lot of symbols and extra
spaces, which provided me with some great practice on “stepping into” the subprocedure to
figure out exactly where the values were. There were many times where I was trying to use the
instring and mid functions and I had to just try random numbers to find the data I wanted to
extract out and write into the worksheet. I was able to successfully import and parse the data,
but not without a lot of time and effort!

Imported Data Formatting Issues
As the imported data from Word was brought into Excel as a string, I was presented with the
problem of reformatting the GPA numbers. These numbers were formatted as values and not
as numbers, like I needed them to be. This affected my Overall and Major GPA Rankings
buttons—the subprocedure did not recognize the imported GPAs as values and left them out.
To fix this, I was able to find the “Val” function. Basically, the Val function accepts a string as
input and returns the numbers found in that string. For example, the Val function with the
string “I would like 10 cookies” would return the number 10. With this function I was able to
change GPAs from values into numbers.

Interview Scheduling User Form
The interview scheduling user form took me some time to figure out. I felt that I wasn’t too
familiar with how list boxes worked. As can be expected, the part of the form that took me the
longest to complete because of the conceptual difficulty was the “Save” function. I was able to
ask and get assistance from some fellow classmates, which helped out a lot. In the end, I think
that I was successful with the user form and I am pleased with how it turned out.

No Simultaneous Editing and Viewing Feature
One negative aspect of doing the application selection in the program I have written is that it
does not allow for simultaneous editing and viewing, which was why I have used a GoogleDoc
for this process for the past few years. Although it isn’t a big problem, each time there is a
change I will have to update and email the most recent versions to our program directors.

