

VBA FINAL PROJECT

BY BLAKE JONES

DECEMBER 9, 2010

EXECUTIVE SUMMARY

 This VBA project improves how customer information is recorded and tracked by C-Clearly

windows. C-Clearly is a small window cleaning company that a friend and I started two summers ago.

Our main focus is residential customers, although we have done a few commercial jobs. We currently

have 50 customers listed on a spread sheet who we’ve served over the last two years, and we plan on

adding more to that list next spring.

Problems: Our spreadsheet is sporadically populated, often containing only the names of people and

missing important information such as phone numbers and whether or not we’ve received payments.

We are very busy over the summer, and often forget or are too tired to update our records properly at

the end of each day. Also, we’ve had difficulty remembering important tasks such as following up with

contacts, calling customers in advance of upcoming appointments, and tracking payment receipts and

deposits.

VBA Solution: My program solves these problems by taking the user through a form walkthrough. The

walk-through goes step by step, prompting the user to information about completed jobs, payment

receipts and deposits, follow-up items, and new customers. When all new information is entered the

VBA generates a 10 day calendar that lists which jobs are scheduled for each day. The calendar also

includes weather forecasts pulled from weatherchannel.com. The program then searches the database

and creates a list of outstanding checks and follow-up items, highlighting in red those items that are past

due. Finally, the program sends a text message with a reminder to call tomorrow’s appointment with

the accompanying job and contact information.

DESIGNING THE DATABASE

 Before I could start writing VBA code, I had to design a database that would meet the needs of

my small company. I had to choose carefully what information I included and what information I left

out. I knew that once I started writing code, editing the foundation of the database could cause

problems. Creating the database was more difficult and time consuming than originally expected, and I

frequently had to go back and make changes as the project progressed. If I were to do this project

again, I would spend more time on this step, carefully deciding what information was needed so that I

would not have to go back and make changes in the middle.

CREATING THE WALKTHROUGH

 The next step was to create the forms needed for the project. The purpose of the program is to

ensure that that customer information is accurate and up to date, so I used forms to create a

walkthrough system. The system forces the user to consider new information every time the workbook

is opened, and gives them a uniform format to enter new information into the database. The flow of

the forms is as follows:

The first form, “frmCompleteJobs”, is programmed to open

with the workbook. This form welcomes the user and asks

if any jobs have been completed. If “Yes” is clicked, it takes

the user to the Update Jobs form, “frmUpdateJobs”, if no is

clicked, the user is taken to the Check deposits form

“frmCheckDeposits”. The process continues through the

Follow-up Items and Adding New Jobs/Customers forms. At

any point during the walkthrough, you can click “Skip Intro”

and be taken directly to the Upcoming Jobs” page of the

work book.

Open

Workbook

UPDATING THE DATABASE

The forms to update the database are more intensive then the walkthrough forms. First I created a form

to add new customers, then two separate but similar forms to update current customer information

(one to update completed jobs and one used to update general information). Finally I created forms to

review and update check deposits and open followup items.

Add New Customer

The Add New Customer form,

“frmAddCustomer”, was the first form created

after the database was finished. It’s similar to

the forms we used during our USDA

assignment, but has a few elements worth

noting:

It finds the last row by selecting a cell below the

bottom of the datasheet and using .endxlup,.

then selecting r = activecell.row + 1

The VBA declares a variable for each textbox

based on the information entered. For

example, “Date Scheduled“ would be set as

date, “Quote” as currency, etc. When the save

button is clicked, textbox values are assigned to their

respective variables and the variables to the database. A

variable termed “Blank” is set as string and equal to the

value of “-----“. All empty fields are assigned to the blank

variable. This ensures information is entered into the

database in its proper format so that it can be manipulated

later, and that there are no blank cells.

Complete Jobs

The Complete Jobs form, “frmUpdateJobs”, automatically populates a list box showing the user which

jobs should have been completed. You can then select a job from the list, click the “Update” button,

and the information about the job will be pulled from the database. After updated information is

entered in, like completion date, payment amount and payment form, the save button updates the

database and clears the text boxes. Another job can be selected or the user can move on to the next

step.

The list box is populated on the Initialize event, and a For statement cycles through all the rows of the

database. If the scheduled date is less than or equal to the current date, and if the completed date is

not less than the current date (prevents old jobs from showing up), then the customer and the

scheduled date appear in the list box.

The Form uses combo boxes for Payment Form and Check Deposited, as well as Option Buttons for

Outside vs. Inside. This helps create consistency in the database and helps when calculating “estimated

completion time” and tracking check deposits.

When the form populates its list, the job and date are concatenated into one long text string. When a

job is selected to update, the form finds the correct row using a Mid function to grab the name out of

the string and searches the database for that name using the InStr function.

Creating the Complete Jobs forms was much more difficult than anticipated. I wanted to save the data

as variables set as dates, currency, etc., instead of as string so that it could be manipulated

appropriately, but some cells have data, and others have the filler “-----“. If I used the method I did on

the Add Customer Form, and set textboxes equal to declared variables, the form would crash because

variables and data types sometimes didn’t match. If I dimmed all variables as variant, the form

wouldn’t crash but would return 12:00:00 AM where dates we’re cleared or left “-----“. To solve the

problem, I creating the blank variable and dimed it as string as mentioned above. For example, if

“txtDateScheduled” was populated with a date, then the variable “Date” which is dimmed as date would

bet set equal to it. If

“txtDateScheduled” was

left blank, than the string

variable “Blank” would be

set equal to it.

Update Check Deposits and Followup on Open Items

The Update Check Deposits form, “frmUpdateDeposits”, populates a list showing all the checks that

have been received but not deposited. The list is updated by clicking selecting the checks that have

been deposited and clicking the “deposited” button. Writing the VBA was made easier by the combo

box approach used in early forms. By creating consistency, it allowed me to use a simple If cell = “No”

function

The process was similar for the Follow-up on Open Items form. I used a For loop and IF function to

search for all customers that had follow-up items. When the Item is completed the form deletes it from

the list and the database.

Schedule New Jobs / Update Customer Information

This form gives the user a chance to enter in a newly scheduled jobs or update customer information. It

allows them to search through the database based on customer name. The search function is very

similar to the one performed in class.

DESIGNING THE UPCOMING JOBS SHEET

 When the information walkthrough is finished, the workbook runs the runMymacro Sub

Procedure, which populates the “Upcoming Jobs” sheet and sends out the text messages. The

upcoming jobs sheets has six elements: The current date, a revenue total for the year, a list of

outstanding checks, a list of outstanding contact items, and calendar that tells upcoming jobs and the

weather for each day. (See appendix A)

Current Date and Revenue Total

The current date is a cell with the formula

“=today()” . It automatically updates to the

current date as soon as the workbook is opened.

The revenue total is just sum of the payments

received column from the database for the year.

List of Outstanding Checks and List of Outstanding

Items

The VBA for the list of outstanding checks is

located under the Sub “pullBoxitems ” in the

“runMymacro” module. It’s fairly simple. I used

one large For loop to populate both lists so VBA

would only have to search through the database

once. I used an IF cells(r,17) = “No” statement to

find customers with outstanding checks, then

copied and pasted their information to

“Upcoming Jobs” sheet, row “x”, where x = 10 for

the first loop and then x = x + 1 for each

successive loop. I did the same thing for

outstanding items, using the variable y, setting y =

25 for the first loop and then y = y + 1 for each successive loop. VBA also highlights past due

outstanding items in red.

Populating Weather Forecast

The program populates the calendar with a 10-day weather forecast from weatherchannle.com.

Originally, I tried using the Macro recorder to write the VBA, but it was too time consuming to copy and

paste so many times. I simplified it by breaking the procedure into two parts. I used the recorder to pull

the table, and wrote the code to copy and paste myself. I broke the copy and paste code into two parts.

The first part, sub PasteToday (), Inserts the “current date” value into a find function, selects and copies

the date, and pastes it back on the “UpcomingJobs” sheet at absolute reference Cells(7,17). It then uses

relative references to fill in the rest of the weather information for that day. Rather than repeat the

PasteToday () code ten times, I used a loop to fill in days 2 through 10, using all relative references.

I downloaded the pictures from

weatherchannel.com and saved them to

the same folder as the workbook. I gave

each picture the same name that appears

for its description online and in the

calendar. For example, the picture for

“sunny” weather has the address

“C:\Users\Blake\Documents\Accounting

4\VBA\VBA Project\sunny.gif”. I used

the function “ThisWorkbook.path” in my

loop and saved the pictures to the same

folder as the workbook. This allowed me

to move the workbook without having to

change the code.

Clearing old pictures was a challenge. I decided it was

simplest to create a do-loop that cleared all shapes

from the worksheet until the shape count equaled

zero, however this method also deleted my buttons.

This is there are no buttons to easily access the user

forms from the worksheet and is one of the short

comings of the project. I can solve the problem by

inserting the buttons onto a ribbon later.

(Sometimes the code freezes because it finds a weather condition that I haven’t downloaded a picture

for. When that happens I go online, download the new picture, and save it under the proper name.

Hopefully soon I’ll have all possible weather conditions accounted for.)

Populating Upcoming Jobs

Populating the table with upcoming jobs uses a double

For loop, If statements, and the In string function. The

difficult part of pulling in job information is that some

days have multiple jobs. To solve the problem, I created

variable named “extraJob” and set it initially equal to

one. If extraJob equals one and the loop finds a job, it

populates the first part of the table and sets extraJob

equal to two. If extraJob equals two, it populates the

bottom part, and sets extraJob equal to three. We

generally only have time for two jobs in one day, so If a

third job is found, a message box stating that you have

too many jobs for one day is displayed.

Formatting the Table

I formatted the “Upcoming Jobs” sheet

and the Customer Database using

Macro Recorder, and set macro to run

at the end of the sub procedure. Also, I

insert a formula to calculate the

estimated completion time for the job

based on the number of regular panes,

hard to reach panes, window wells, and

whether it’s outside, inside, or both.

SENDING THE REMINDER

 At the end of the project, VBA will send a text message to my phone reminding me to call our

jobs for the next day. The text includes the name, time, and phone number for tomorrow’s jobs. I used

the class example as a foundation to automate sending text through email. Writing the message was

difficult because I didn’t include the customers phone number as part of the information on the

calendar. This means I had to pull the name from the next day on the calendar, find that name in the

database, and then find the corresponding phone number. To simplify the code I used a Sub function to

find and return the number text, inside a Sub function designed to build return the text of the message,

inside a Sub Procedure that emails the message. Sub functions are an aspect of VBA I’ve struggled with,

and this was a great chance for me gain a better understanding of them.

APPENDIX A – UPCOMING JOBS CALANDER

