
David Avery

MBA 614

Final Project

Automated Bookkeeping in Excel

Executive Summary

Many accounting students try to practice their accounting skills by working as contract

bookkeepers throughout school. Many times, clients that hire these student-bookkeepers do

have not purchased bookkeeping software because they don’t feel like they can justify the

expense. In these cases, the student is forced to cover the costs of a bookkeeping program,

such as QuickBooks. My completed project is a simple Excel-based bookkeeping program that

performs many of the same bookkeeping functions that QuickBooks does.

This report will take you through a step by step guide of what this program does and how you

operate it.

Front Page

Upon opening the workbook, you are immediately asked to log in. The log in screen itself is a

user form, but it verifies log-in information off of a worksheet that is hidden within the

workbook. I’ve taken extra steps to protect the log-in information by writing an event-based

subprocedure where any time someone attempts to access that worksheet it immediately hides

itself, thereby making it completely inaccessible. Also, in order to protect company

information I’ve written code which hides everything but the front worksheet until acceptable

log in information is submitted, and I’ve also blocked any other function from working without

valid log-ins. The following screenshot illustrates the front page:

For all workbooks, the default username and password are both “admin”.

This is the Log-in user form. It

compares log-in information

to a hidden worksheet.

If you were to click any of the

buttons before logging in, you

would get this message.

The front page is the only

visible worksheet before

logging in.

It is also important to note that the workbook is protected from any sheets being added, as are

all worksheets protected from any changes being made. I actually wrote subprocedures for

protecting and unprotecting the workbook and worksheets which I use frequently throughout

the program whenever any changes need to be written. There are several examples of when

this would happen, which I will address throughout this paper.

After logging in, all of the functions of the workbook are available, and all worksheets are

viewable, with the exception of the users worksheet. This is shown below:

Chart of Accounts

A necessary function of the program is having the chart of accounts. This is the central place in

the workbook where any bookkeeping function can be accessed. The screenshot below shows

the chart of accounts:

The chart of accounts automatically looks up each accounts balance and refreshes it every time

the chart is activated. This is a helpful snapshot of company financial information. Also, to help

organize information, I’ve included buttons that will sort the accounts by name, number, or by

the order in which they appear on the balance sheet/income statement. Also, if you wanted to

access an account, you would just have to double click on that account’s name, and excel will

automatically activate that worksheet. To do this I had to unlock the cells in column B. I was

hesitant to unlock those cells because it would allow a user to change the account name

without using the existing automated process. To mitigate this, I wrote an event based

procedure that prevents changes from being made to any unlocked cell on the chart of

accounts. The chart of accounts also allows users to add new accounts to their company’s

chart, as well as edit existing ones. The user forms for these functions are shown below:

The account type combo boxes on these forms are pre-loaded with the different types of

accounts you would regularly find on a balance sheet or income statement. You can only select

from those specific types of accounts, and cannot create your own account type. Upon saving

the new or edited account, the chart of accounts will be updated, and a worksheet with the

account’s number and name will be created (or updated). Note that in the above example, the

name of “1000 – Bank Account” account was changed to “1000 – Awesome Savings”. The

following screenshot shows the updated chart of accounts:

Customers and Vendors

There are two worksheets, one each, for tracking both customers and vendors. The vendor

sheet is important because it is the source for all names on the “Enter Bills” user form, which is

part of the Accounts Payable worksheet. New vendors and customers are entered through a

The “Choose an Account” dialogue box appears

before the edit account user form so that you can

pick which account you want to edit.

The Save & New button allows you to

create multiple accounts at once

without ever closing the user form.

Notice that both the Chart of Accounts as

well as the individual account worksheets

were updated with those changes.

user form, which automatically saves the information on the appropriate worksheet. The

“Vendors” worksheet is displayed below as well as the user form which is used for entering in

information for a new vendor.

Account Ledgers

Any time an account is created, a new worksheet is created to serve as that account’s ledger. It

tracks all transactions that were entered for each account, and provides all unique information

for each transaction. Each ledger has three buttons, one to send you back to the front page,

one to send you back to the chart of accounts, and one which brings up the user form to enter a

new transaction. The screenshot below shows the ledger for the “1000 – Awesome Savings”

account as well as the new transaction user form, and explains different parts of each:

These radio buttons determine

to which worksheet the name

will be saved.

The New Vendor brings up the

user form. “Back to Front”

sends you back to the front

page.

You can add up to 4 additional splits,

and remove any extra ones.

Clicking the “Add Memo” button

brings up this input box. The memo is

saved as a comment for the

transaction number cell (column 2).

The transaction user form has several

input controls. It will not accept any

blank text boxes (such as the date in

this example); it requires that the

debits and credits are numeric, that

you can only use either the debit or

credit box (but not both) for each

split, and that total debits and credits

equal each other; and it will not allow

you to submit a transaction where the

same account is used twice.

The transaction number will always be

unique to a transaction. It starts at 1 for

a new company, and continues to

increase as each new transaction is

entered.

All transaction data is entered on the next available row. The

Balance column auto-fills a formula that calculates the correct

balance depending on the account type.

Accounts Payable Ledger

Accounts payable is a necessary account for any business. It allows the business to track what

bills are unpaid, to whom they are owed, how much they are, and when they are due. When

the accounts payable worksheet is activated, the worksheet automatically sorts itself so that

unpaid bills are moved to the top, and are sorted by due date. From the accounts payable

worksheet you can both pay bills and enter new ones. The screenshot below shows the

worksheet:

Below are the Enter Bill and Pay Bill user forms as well as explanations of their features:

Once a bill is paid, it is marked with an

“X” and its payment is lined up

underneath it.

Just like with the transaction user

form, you can enter a memo when

you enter a bill, which is then saved as

a comment in column B.

The only way to enter a transaction in

the A/P ledger is through the New Bill

and Pay Bill buttons. The transactions

are automatically recorded in their

respective accounts.

When you click “Pay Bill”, the

“Payment Date” input box appears.

The vendor name combo

box is auto-filled by the

names of the vendors of

unpaid bills. The

transaction no. and bill

amount labels are there as

verification that you are

paying the correct bill. I did

this in the event that there

are two bills with the same

vendor name.

The Enter Bill form pre-loads with all

of the vendor names, and all of the

expenses from the chart of accounts.

Entering the bill date instead of the current date

is important because it allows the income

statement (discussed below) to report expenses

on an accrual basis.

Reports

Using the functions described above, I was able to put together one year’s worth of data for

Awesome, Inc. The last function that this program performs is that it can dynamically produce

three different types of reports: the balance sheet, the income statement, and ledger reports.

Below is an updated chart of accounts with one year’s worth of data entered, along with the

create reports dialogue box:

When you select a report to create, one or two input boxes will appear depending on the

report you choose. The balance sheet will ask you for a balance sheet date, while both the

income statement and ledger report will ask you for a “From” date and a “To” date (i.e. from

1/1/2010 to 12/31/2010). The reports will then gather information from the chart of accounts,

and from each individual account to produce what you want. The best thing about these

reports is that they get rebuilt each time you create them, so if you create a new account for

example, the balance sheet will pick it up and include it the next time you refresh the balance

sheet. I’ve attached the reports on the next few pages, first with the balance sheet as of

12/31/2010, followed by the income statement from 1/1/2010 to 12/31/2010, followed by a

ledger report for the checking account from 1/15/2010 to 2/14/2010.

ASSETS Balance

Current Assets

Cash

Awesome Savings 6,228

Petty Cash 260

Awesome Checking (11,825)

Total Cash (5,337)$

Other Current Assets

Inventory 10,800

Total Other Current Assets 10,800$

Total Current Assets 5,463$

Long-term Assets

Fixed Assets

Building 50,000

Accumulated Depreciation (5,000)

Total Fixed Assets 45,000$

Other Long-term Assets

Automobile 12,000

Total Fixed Assets 12,000$

Total Long-term Assets 57,000$

Total Assets 62,463$

LIABILITIES

Current Liabilities

Accounts Payable 6,480

Other Current Liabilities

Credit Card -

Auto Loan 11,026

Total Other Current Liabilities 11,026$

Total Current Liabilities 17,506$

Balance Sheet
Awesome, Inc.

As of 12/31/2010

Long-term Liabilities

Building Mortgage 48,985

Total Long-term Liabilities 48,985$

Total Liabilities 66,490$

EQUITY

Owners Equity

Common Stock 13,000

Paid-in Capital 2,000

Retained Earnings (19,027)

Total Owners Equity (4,027)$

Total Equity (4,027)$

Total Liabilities + Equity 62,463$

Amount

Revenues

Merchandise Income 11,350

Service Income 8,674

Total Revenues 20,024$

Costs of Goods Sold

Direct Materials (6,500)

Direct Labor (7,602)

Total Costs of Goods Sold (14,102)$

Gross Margin 5,922$

Operating Expenses

Selling Expense (3,965)

Administrative Expenses (15,454)

Interest Expense (8,380)

Depreciation Expense (5,000)

Total Operating Expenses (32,799)$

Net Operating Profit/(Loss) (26,877)$

Other Income

Rent Income 7,850

Total Other Income 7,850$

Other Expense

Loss on Sale of Asset -

Total Other Expenses -$

NET INCOME/(LOSS) (19,027)$

Income Statement
Awesome, Inc.

1/1/2010 - 12/31/2010

Date Num Name Split Debit Credit Balance

Previous Balance 0

01/15/2010 3 Awesome, Inc. 1000 - Awesome Savings 10,000.00$ 10,000.00$

01/17/2010 11 Awesome Bank Multiple Splits 150.00$ 9,850.00$

01/20/2010 12 Awesome Bank Multiple Splits 857.00$ 8,993.00$

01/21/2010 13 Awesome Bank 2000 - Credit Card 25.00$ 8,968.00$

01/28/2010 16 Awesome Bank 2100 - Accounts Payable 78.95$ 8,889.05$

02/02/2010 18 Liz Lemon 2100 - Accounts Payable 300.00$ 8,589.05$

02/05/2010 19 Things, Inc. 1100 - Inventory 9,000.00$ (410.95)$

02/08/2010 20 Kenneth Parcell Multiple Splits 350.00$ (60.95)$

02/12/2010 21 Jenna Maroney Multiple Splits 1,348.00$ 1,287.05$

TOTAL 1,287.05$

Ledger Report: 1020 - Awesome Checking
1/15/2010 - 2/14/2010

Learning and Conceptual Difficulties

There were several difficulties in getting this project to work. The first problem I really ran in to

was how I would be able to authenticate users without making that information readily

available. I wanted there to be an option to have multiple users, so hard-coding a username

and password into the VBA code itself was not an option. Instead I found out how to create an

event-based subprocedure which would prevent you from ever opening the users worksheet.

The code is as follows:

Private Sub Worksheet_Activate()

 Users.Visible = False

End Sub

It turned out to be pretty simple, and has proven to be a good option for authentication.

Another problem I kept running in to was how to format the worksheets for new accounts. I

had the Chart of Accounts linked to each new account so that it could read each account’s

balance. The problem, though, was that when there were no transactions in an account, the

chart of accounts wouldn’t report a zero balance. In the end, I decided to hide the 4
th

 row of

every account, enter 0 into column G to signify a zero balance, and then in the 5
th

 row, column

G I put the formula to calculate the balance. This solved my problem.

Several times throughout writing the code, I found myself repeating large blocks of code.

Eventually, I’d find problems within that block of code and then I’d have to go through and

repair each individual block of code with that same problem. I found this to be time

consuming, and even wasteful. Eventually I remembered that I could create subprocedures

with pass-through variables. This made the programming much easier. One example is in the

new transaction user form. The form allows for up to six lines of information to be saved on six

different account ledgers. I started by writing the code for each individual line. I kept running

into errors, and I had to go back and fix each line, one by one. Eventually I was able to write a

subprocedure which required you to pass on each piece of information (account, debit, credit,

etc.), but then it took each piece and posted them to their respective account. This was

extremely helpful because it cut down on the code I had to write and because I was able to just

go to one subprocedure to fix any errors, instead of poking around in six different places.

The biggest obstacle I ran into was in the creation of the reports. I really wanted them to be

dynamic so that they could be created based on the dates that the user chose. This meant that

sometimes there would be new accounts created between the generation of these reports. I

needed to write a code that would look at each type of balance sheet/income statement

account, and then go find every account that fit under that classification. It took me a while,

but I was able to figure it out. The code is its own subprocedure that requires a string which

represents the account type to be passed through. It then looks at each item in the chart of

accounts, and picks out only those accounts which match the given account type, and then goes

to the ledgers of those accounts to get the appropriate balance. I was pretty proud of that

code because it allowed me to create these dynamic reports without missing any newly created

accounts.

I hope to be able to continue to build on this. Some functions that I want to add include:

editing and adding new users; editing existing transactions; and creating a cash flow statement.

I didn’t realize how much I could do with excel before starting this project, and am amazed that

the whole thing was able to work out.

	Microsoft Word - final project writeup
	Awesome, Inc. balance sheet
	Awesome, Inc. IS
	Awesome, Inc..xlsm
	Microsoft Word - final project writeup

