
EFTPS TIME SAVER 

 

EXECUTIVE SUMMARY 
 

Like many other students and employees, I do all I can to avoid time-consuming, mind-numbing 

activities. One such type of activity is paying payroll taxes for the small business for which I 

perform payroll duties. A typical Thursday afternoon I could be found clicking through the 

Electronic Federal Tax Payment System website for up to 15 minutes entering information piece by 

piece as I navigated through the payment submission process. Often, I finished only needing to 

return to the beginning to repeat the process again to process additional payments. This project 

attempts to automate this work. 

The program I have written first accepts login credentials from the user, then logs into the EFTPS 

website. It then retrieves options from the webpage and asks the user to input all of the payment 

information in a second user form. This allows all of the payment information to be entered using 

only one form and saved for later entry into the website. When the form is saved, a number of data 

checks are run on the inputs to ensure that the program can run without throwing an error from 

the website. The program then navigates through the system, entering the relevant information 

where necessary. When all of the information is entered, the program displays the confirmation 

page from the webpage and asks the user to verify the information. If it is correct, the payment is 

submitted and the user has the option to make another payment or quit. If the information is 

incorrect, the user can reenter the information. After the payment is submitted, the information is 

saved into the Excel workbook along with the confirmation number from the EFTPS website and 

the Internet Explorer is closed. This program typically now only takes about 1 minute to run, 

depending on the speed of the internet connection. 

PROJECT EXPLANATION 

FORMS 
My original goal in creating this program was to 

provide a solution that would allow me to enter 

all of the necessary information in a centralized 

location to avoid having to click through the 

Electronic Federal Tax Payment System (EFTPS) 

and enter information piece by piece. So, I 

started by creating the forms for data entry.  

The first form I created was the payment form 

(Figure 1). I created text boxes for the payment 

amounts, settlement date, tax payment type, Figure 1 - Payment Form 



etc., and then realized that I would need some way to ensure that the information entered was 

correct. I then decided to use combo boxes for the information that had only a set number of 

possibilities, to ensure that the information entered was correct. One difficult combo box was the 

tax form box. I knew the current types of tax forms available, but I wanted to make the program 

such that it would be more robust if the website were to change. Thankfully, the website had a 

similar combo box that I was able to extract information from by learning the properties of combo 

boxes in HTML. I used the websites combo box to populate the box in the form. The settlement date 

was also a little tricky because the website would throw an error if a non-business day was entered, 

so I had to learn the functions to ensure that a business day was selected (I haven’t figured out how 

to deal with holidays, yet).  

Once I had all of the boxes created, I added functionality to the buttons on the form. The cancel 

button unloads the form and then asks if the user wants to leave the program. If so, the sub ends 

and a public variable is set to true. When the main calling sub takes back over, it runs an if 

statement and ends the whole program if the quit variable is true. The clear form button merely 

clears all information entered into the form. The save button takes all of the data and runs a few 

data checks. First, it checks all combo boxes to ensure that an option has been selected and then 

saves the entries to public variables for use in the module. Next, it checks all the text boxes for 

entries, ensures that the entries are numeric, compares the entries to the proper format, and then 

saves the entry as a public string variable to be entered into the website later. It also sums the sub 

category entries to make sure they equal the total entered. Finally, the form is hidden and the user 

sits back while the rest of the code executes. 

The second form I created was the login form 

(Figure 2). After watching Professor Allen walk 

through logging into the route Y website, this 

part was pretty simple. I created text boxes for 

the EIN, PIN and Password, and then set the 

password character for both the PIN and 

Password textboxes to an asterisk for privacy. 

Next, I created the buttons to allow a user to 

cancel (this button uses similar logic to the 

cancel button on the payment form) which 

asks him or her to confirm and then exits the 

whole program, if desired. The login button 

runs a few data checks to make sure the boxes 

contain an entry, and that the entry is numeric 

and the proper length. The button then saves the entries into public variables to allow the main sub 

to log in to the EFTPS website. 

 

 

Figure 2 - Login Form 



SUBS 
In order to keep the procedures manageable and callable from other subs, I created a fairly involved 

set of calls to subs. An outline is as follows (lower levels indicate a call to a sub from the higher level 

sub): 

• runAll 

o login 

� login form 

o enterPayment 

� moveToPayment 

� payment form 

� enterForm 

� selectPaymentType 

� enterTotal 

� enterCategoryAmounts 

o verifyPayment 

� enterPayment 

� savePaymentData 

o addPayment 

o closeBrowser 

The runAll sub is basically the master sub that calls all of the other subs. It does have some 

functionality in parts where the user can request to cancel the program and exit. This sub also 

manages the protecting and unprotecting of the worksheet (nothing sophisticated, just unprotects 

it and protects it when exiting or ending the sub). I decided to add the protection to the worksheet 

to prevent accidental deletion of data. 

The login sub takes care of opening the login form (described above), navigating to the login page 

(Figure 3), and entering the login information. The values are taken from the login form and 

entered into the appropriate fields. This sub also attempts to deal with the problem of incorrect 

login credentials. 

The enterPayment sub calls the payment form and the subs necessary to enter the payment 

information in the successive pages on the EFTPS website. It also handles the situation of a user 

requesting to leave the program 

after clicking cancel on the payment 

form. 

The moveToPayment sub moves the 

browser to the tax form selection 

page. The enterForm sub then 

makes the appropriate selection in 

the “Most Common Forms” combo 

box (This is also where the payment 

Figure 3 - EFTPS Login Form 

Figure 4 - EFTPS Tax Form Selection Page 



user form pulls the information to populate 

the “Tax Form” combo box). The sub then 

clicks the next image to advance. 

The selectPaymentType sub takes the tax 

payment type selected in the payment form 

and selects the corresponding tax payment 

type on the EFTPS tax type selection page. 

This sub also checks to be sure that the radio button description matches the selection by the user 

(this helps catch any changes in the EFTPS ordering of the tax payment types). The page is then 

advanced to the next step. 

The enterTotal sub enters the information 

from the payment form into the appropriate 

boxes on the EFTPS Business Tax Payment 

page. This page is the reason I needed to 

perform data checks on the information 

entered into the payment form. The total 

amount needed to be in the following 

number format: $$$$.¢¢ . This required the 

amount to be entered as a string rather than 

as a value because any zeros on the end of 

the figure to the right of the decimal are 

dropped in numeric format, while as a 

string, every figure is entered. Similarly, the date and year needed to be entered with the 

appropriate number of digits for the website to recognize the entry as valid. Thus, the data checks 

in the payment form help to ensure that the website doesn’t throw an error when this sub clicks the 

next button to advance to the next page. 

The enterCategoryAmounts sub again 

takes the information entered in the 

payment form and enters the category 

amounts in the appropriate boxes in 

the EFTPS Sub Category Amounts page. 

This page also necessitated the data 

checks in the payment form. The 

amounts entered in the sub category 

fields must be in the same number 

format as the total on the previous 

page, and must also add up to the total 

amount. By checking the data before 

entering it into the webpage, I was able 

to prevent the page from throwing an 

error and thus causing the program to throw an error. 

Figure 5 - EFTPS Tax Type Selection Page 

Figure 6 - EFTPS Business Tax Payment Page 

Figure 7 - EFTPS Sub Category Amounts Page 



The verifyPayment sub requests the 

user to verify the payment 

information before allowing the 

program to submit the payment. If the 

payment information is false, the full 

enterPayment sub is run again to 

allow the user to edit the information. 

The user also has the option to cancel 

and confirm the request to leave the 

program. This allows for one last 

chance to end the program before 

submitting the payment to the EFTPS 

website. Finally, this sub saves the 

data using the savePaymentData sub, 

submits the payment, and saves the 

confirmation from the following page. 

The savePaymentData sub writes the payment information to the excel spreadsheet (Figure 9). It 

also attempts to resize the column, but this part has not worked consistently for me.  

The addPaymentData sub allows the user to enter additional payments. It basically runs the 

program again until the user 

says that no additional 

payments are necessary. 

Last of all, the closeBrowser 

sub clicks on the logout 

button and handles the 

additional pages needed to 

successfully log out of the 

EFTPS website.  

 

 

CONCEPTUAL DIFFICULTIES AND LEARNING 
As with all projects, I encountered a healthy dose of difficulties in creating this program. One big 

problem I had was that the “Next” button on the EFTPS website (and in many of the figures in this 

document), did not have a way to reference it, nor did the forms that I was trying to submit. I 

struggled with this for a time until I asked Professor Allen if he knew of a way to get around this. 

We worked together and eventually came to the solution of writing an additional procedure in the 

class module that would allow me to click on an image by supplying the url of that image. This sub 

cycles through all tags in the webpage and compares the url supplied with that of the current tag. 

Figure 8 - EFTPS Verify Payment Information Page 

Figure 9 - Excel Worksheet With Saved Data 



When it finds a match, the sub performs the click method of that tag. The sub has worked 

beautifully for me.  

Another difficulty for me was figuring out how to get the total and sub category amounts in the 

proper number format. Though it was a relatively simple concept, I learned the important 

difference between a string variable and a numeric variable (integer, long, single, double). I also 

learned that I could use both the value property and the text property of a text box to check if the 

sub categories sum up to the total, then save the text as a string with all of the necessary zeros.  

Finally, I had a difficult time figuring out how to get a handle on the confirmation number in the 

confirmation page of the EFTPS website. There was no identifier that allowed me to pull it down 

and save it. I asked some classmates and searched on the internet for a way to identify it, but had 

not luck. Finally, I decided to browse through the class module that Professor Allen provided us (it 

provides much of the functionality in working with Internet Explorer). There, I found a procedure 

that allowed me to look at the html source as text and move around in it. From there, I realized that 

the confirmation number was the only bolded text on the page. I was then able to move to the html 

tag <B> and bring back the appropriate number of characters to retrieve the confirmation number. 

In sum, not only did I learn more about VBA and Excel, I also learned how to work with html and 

objects in Internet Explorer. 

CONCLUSION 
I had a good time working on this project. Though it will take a good number of Federal Employer 

Tax payments using this program to justify the time it took to write it, I learned a great deal that 

will be helpful to me in the future; specifically, the ability to see an opportunity to improve on a 

process and the skills to work through the solution systematically using available resources. I hope 

that this program will benefit not only me, but others who may find a use for it as well.  


