

PinsRUs Solutions:
Pricing Tool & Quote Database

Brian Wade

ISYS 520

Executive Summary

Situation:

I happen to know the owner of a growing business called PinsRUs. PinsRUs designs and manufactures

pins, medallions, and other similar products. The company is headquartered in Utah, but also recently

acquired a factory in Kansas. PinsRUs does business all over the country, filling custom orders every day.

When PinsRUs receives a request for a quote (whether over the phone, in person, or through the

company website) a company sales associate must perform the necessary calculations to determine

what it will cost the company to fill the order, what price the customer should be charged to earn an

acceptable profit margin, etc. The pricing model involves several variables, which differ with each

custom order. The pricing also depends heavily on the cost of the metal that will be used in

manufacturing, which can fluctuate significantly over time. On average, the owner of PinsRUs estimated

that his salesmen probably spend 15 to 20 minutes going through all the calculations to provide a single

quote to a customer.

Solution:

To help PinsRUs streamline and speed up the pricing process, I have utilized the knowledge and skills

gained from our ISYS 520 class to develop a decision support system with VBA code in Excel. All user

interaction with the program is through clean and simple user-forms. The program asks the user to

input all necessary details about the order sought by the customer, accesses other information from a

master data spreadsheet, and then performs all the necessary calculations almost instantaneously. The

program then provides a cost and pricing breakdown with all the necessary information for PinsRUs and

the potential customer. The quote breakdown is then saved to a searchable database, and can be

accessed at a later time. This program was extremely well received by the owner of PinsRUs, and he

estimates that it will (at the very least) cut the time required to prepare a quote by 50%.

Implementation Documentation:

1. Building the Code

1.1. Guiding Principles

Principle #1: Explanation:

Automation

Reasoning: The purpose was to save as much time as possible for salesmen
at PinsRUs. Any calculation that could be automated should have been and
was automated.

Execution: Users are only asked to input what is absolutely necessary.
Everything else is pulled from a master table or calculated. The master
tables worksheet is hidden in the workbook to avoid unintentional changes.

Figure 1.1 - a screen shot of the worksheet containing the formulas and master tables, wage

rate, raw material costs, etc. The code pulls several pieces of information from this sheet,

minimizing the load placed on the user.

Principle #2: Explanation:

Usability

Reasoning: I wanted the program to be easy to learn and utilize. It needed
to fit well with the needs of PinsRUs, and be designed with the user in mind.

Execution: For example, the order in which information is inputted into the
program reflects the logical flow of a conversation with a customer looking
to place an order. This will minimize complications and speed PinsRUs
employees down the learning curve once it is introduced as an everyday tool.
Great usability will lead to seamless integration.

Figure 1.2 – In order to help salesmen intuitively use the program according to the natural flow

of an interaction with a new potential customer, the first page that appears when a new quote is

initialized asks for essential general information. The user can enter things such as the name of

the client, the company or organization they represent, a requested completion date to ensure

that the project is possible, and a comments section that allows for a brief description of the

purpose of the order.

Principle #3: Explanation:

Accuracy and
Precision

Reasoning: Another intended benefit of the program is the minimization of
error. Human error occurs frequently when performing calculations. While
no program that requires user input can completely eliminate the possibility
of mistakes, it can certainly help minimize them. The program is going to be
used to price orders that are worth thousands and thousands of dollars. For
example, a miscalculation of 10 cents in the unit cost could lead to a
discrepancy of $1000 on a large order of 10000 pins. Thus, I wanted to make
sure that the program would be error free.

Execution: All calculations and formulas were double-checked when
creating the code. I have also recommended to the owner of PinsRUs that
he run several test quotes, checking the breakdown against his manual
calculations, to ensure accuracy before introducing the program into daily
use. In this way, hopefully any mistakes or bugs will be caught and worked
out.

Figure 1.3 – By running several sample quotes and checking the resulting breakdown line-by-line

against manual calculations, PinsRUs will be able to catch any possible errors in the code and

fine tune the calculations. Once this has been done, they will have an efficient, precise, and

accurate method of pricing that they can utilize with confidence.

Figure 1.4 – (see below) - Part of the long and complicated list of variables required for

performing the final calculations. The rest wouldn’t fit on the screen at one time

.

Principle #4: Explanation:

Flexibility

Reasoning: The program had to be flexible enough to be changed without
too much effort in the future. The business will expand, and new features
and options will be added. Raw material input costs and wage rates will
fluctuate regularly. The program must be able to account for these changes
without being completely rewritten.

Execution: This need for flexibility was kept in mind throughout the process.
For example, the user forms incorporate a multi-page design. In this way, if
more information or inputs are required down the road, another page can be
added to the user form without having rebuild the form. If PinsRUs decides
that they want to gather marketing data from customers when compiling a
quote, for example, a new page could be easily added to incorporate several
marketing survey questions. Also, several inputs are pulled by reference
from the master tables sheet rather than defined within the code. If the
wage rate or unit cost of pewter changes, for example, PinsRUs can simply
change the master sheet and the program will use the new rates.

Figure 1.5 - part of the master tables worksheet, where the rates and/or locations of several

necessary variable inputs are defined. This leads to increased flexibility in the future. For

example, if PinsRUs raises their wage rate to $10 / hour, they can simply change the value in cell

B15 and the program will automatically begin to use the new rate.

2. An Inside Look at the Resulting Program

2.1. Stepping Through a Sample Quote

Following is a step-by-step breakdown of how the program works from the user’s end. Where

significant, explanations of the code-logic that drives the functionality are included:

Step #1 – On the database worksheet, click on “New Quote”. This command button is linked to a macro

that assigns and enters the new quote number on a new row, and then opens the user form to begin a

new quote.

Step #2 – User must begin filling out the pages of the user form. Page #1 is general information.

Step #3 – User must find out what the customer wants – Page #2 is order details. The user form has

been populated with options from the master tables spreadsheet.

Step #4 – User must specify pricing options, such as discount percentage, rush shipping charges, etc.

Step #5 – If the metal unit price charged by the supplier has fluctuated since the last time a quote was

issued, the user can click on “Change Unit Price” (see above). This will allow for a new unit price to be

used for the current quote, and will also change the default unit price on the master spreadsheet.

Step #6 – Hit “Calculate Quote”. The program will crunch all the numbers, write the results to the

database row displaying the assigned quote number, close the current user form, and open a new user

form displaying the quote breakdown.

Quote Breakdown Page #1 displays a summary of the order and the cost breakdown, along with unit

price, profit for PinsRUs, etc.:

Quote Breakdown Page #2 displays additional details about labor and raw materials, and provides an

estimate of total man-hours required to complete the order:

Step #7 – If PinsRUs ever needs to refer back to a previous quote in order to verify something, the quote

can easily be found and pulled up in the database using the find feature. This feature can be accessed

by clicking on “Find Existing Quote”, a command button which is placed right next to the “New Quote”

button on the database worksheet (see previous explanation about starting a new quote).

2.2. Additional Features

The program code was designed with fail-safe measure so as to be as bullet-proof as possible. Many of

these measures are incorporated when “Calculate Quote” is pressed. For example, if any essential

information has not been entered on any page on the user form, the calculations will not execute but

will bring the user back that spot and ask the user to input the missing information. If the user has

accidentally selected a completion date that is prior to the quote date, an error message will be

displayed.

 Figure 2.1 - Examples of bullet-proofing in the code.

3. Learning and Overcoming Difficulties

Writing the code for this program took me dozens of hours. I’m sure that is probably the result of a few

factors. First, I am a beginning programmer. I make stupid mistakes. There was one time where I spent

a few hours trying to debug a part of the program, rewriting the logic in different ways, only to find out

that it was a simple error that should have taken 10 seconds to spot. Sometimes I would need the same

basic block of code multiple times, and so I would hastily copy and paste sections of code, forgetting to

adjust a variable name here and an object reference there. It slowed me down in the long-run. This

taught me how to be patient and meticulous in my programming.

Second, I had to go back and forth with PinsRUs on the phone trying to coordinate the project. I had to

request additional data and information several times. However frustrating this might have been, these

difficulties taught me the importance of information systems personnel. Understand the importance of

information systems guys as the link between business and computer programmers – have to have

interaction with the business guys, what they actually need, etc. that communication is key, must have

someone who understands both sides – example – how much time would be wasted explaining a quote

breakdown, how to calculate a profit margin / unit price, an understanding of the other things that

might come up, etc.

There were many times where I needed to write a block of code or accomplish something that I had

never done before. This taught me to utilize the help feature of VBA, to use resources on the internet,

and to ask more experienced programmers for advice. For example, in dealing with trying to prevent

the user from closing the user form by simply hitting the “x” button in the top right corner of the

window, I found help on the internet. I was able to write the following code. Now, if the user tries to hit

the “X” button to exit the quote, the program will display a message asking if the user is sure he or she

wants to delete the current quote. If the answer is “no”, the user form will resume without any loss of

information.

I also struggled with preventing myself from expanding the scope of the project too much. I remember

talking about this in ISYS 201, and reading that it is actually a major problem for many companies. It is

extremely important to not let a project’s scope expand so far that all semblance of simplicity and the

originally desired functionality is lost. Programming can be as much about deciding what not to do as

what to do. In writing the code, I had several new ideas that I thought would be really cool and I wanted

to add additional features. However, those features were unnecessary to PinsRUs and they wouldn’t be

used. Luckily, PinsRUs was honest with me and kept me on target, letting me know exactly what they

needed and what they didn’t need. As a result, my final program may seem simpler than I would have

liked, but it is also more streamlined, practical and useful than it would have been otherwise. I will

remember that lesson for the future.

In conclusion, I really enjoyed my project. I learned a lot about programming, and plan to continue to

use and develop my skills in the future. I talked with the owner of PinsRUs, and presented my project to

him, and he really liked it. He is planning on having his salesmen use it, and is looking forward to saving

time and money, even thousands of dollars each year.

